kadirnar commited on
Commit
5dbfaf4
1 Parent(s): 7abfcff

Update demo.py

Browse files
Files changed (1) hide show
  1. demo.py +30 -7
demo.py CHANGED
@@ -1,9 +1,18 @@
1
- from metaseg import SegAutoMaskPredictor, SegManualMaskPredictor, SahiAutoSegmentation, sahi_sliced_predict
 
 
 
 
 
2
 
3
  # For image
4
 
5
- def automask_image_app(image_path, model_type, points_per_side, points_per_batch, min_area):
 
 
 
6
  SegAutoMaskPredictor().image_predict(
 
7
  source=image_path,
8
  model_type=model_type, # vit_l, vit_h, vit_b
9
  points_per_side=points_per_side,
@@ -18,7 +27,10 @@ def automask_image_app(image_path, model_type, points_per_side, points_per_batch
18
 
19
  # For video
20
 
21
- def automask_video_app(video_path, model_type, points_per_side, points_per_batch, min_area):
 
 
 
22
  SegAutoMaskPredictor().video_predict(
23
  source=video_path,
24
  model_type=model_type, # vit_l, vit_h, vit_b
@@ -32,7 +44,16 @@ def automask_video_app(video_path, model_type, points_per_side, points_per_batch
32
 
33
  # For manuel box and point selection
34
 
35
- def manual_app(image_path, model_type, input_point, input_label, input_box, multimask_output, random_color):
 
 
 
 
 
 
 
 
 
36
  SegManualMaskPredictor().image_predict(
37
  source=image_path,
38
  model_type=model_type, # vit_l, vit_h, vit_b
@@ -50,6 +71,7 @@ def manual_app(image_path, model_type, input_point, input_label, input_box, mult
50
 
51
  # For sahi sliced prediction
52
 
 
53
  def sahi_autoseg_app(
54
  image_path,
55
  sam_model_type,
@@ -64,7 +86,8 @@ def sahi_autoseg_app(
64
  ):
65
  boxes = sahi_sliced_predict(
66
  image_path=image_path,
67
- detection_model_type=detection_model_type, # yolov8, detectron2, mmdetection, torchvision
 
68
  detection_model_path=detection_model_path,
69
  conf_th=conf_th,
70
  image_size=image_size,
@@ -74,7 +97,7 @@ def sahi_autoseg_app(
74
  overlap_width_ratio=overlap_width_ratio,
75
  )
76
 
77
- SahiAutoSegmentation().predict(
78
  source=image_path,
79
  model_type=sam_model_type,
80
  input_box=boxes,
@@ -83,5 +106,5 @@ def sahi_autoseg_app(
83
  show=False,
84
  save=True,
85
  )
86
-
87
  return "output.png"
 
1
+ from metaseg import (
2
+ SahiAutoSegmentation,
3
+ SegAutoMaskPredictor,
4
+ SegManualMaskPredictor,
5
+ sahi_sliced_predict,
6
+ )
7
 
8
  # For image
9
 
10
+
11
+ def automask_image_app(
12
+ image_path, model_type, points_per_side, points_per_batch, min_area
13
+ ):
14
  SegAutoMaskPredictor().image_predict(
15
+
16
  source=image_path,
17
  model_type=model_type, # vit_l, vit_h, vit_b
18
  points_per_side=points_per_side,
 
27
 
28
  # For video
29
 
30
+
31
+ def automask_video_app(
32
+ video_path, model_type, points_per_side, points_per_batch, min_area
33
+ ):
34
  SegAutoMaskPredictor().video_predict(
35
  source=video_path,
36
  model_type=model_type, # vit_l, vit_h, vit_b
 
44
 
45
  # For manuel box and point selection
46
 
47
+
48
+ def manual_app(
49
+ image_path,
50
+ model_type,
51
+ input_point,
52
+ input_label,
53
+ input_box,
54
+ multimask_output,
55
+ random_color,
56
+ ):
57
  SegManualMaskPredictor().image_predict(
58
  source=image_path,
59
  model_type=model_type, # vit_l, vit_h, vit_b
 
71
 
72
  # For sahi sliced prediction
73
 
74
+
75
  def sahi_autoseg_app(
76
  image_path,
77
  sam_model_type,
 
86
  ):
87
  boxes = sahi_sliced_predict(
88
  image_path=image_path,
89
+ # yolov8, detectron2, mmdetection, torchvision
90
+ detection_model_type=detection_model_type,
91
  detection_model_path=detection_model_path,
92
  conf_th=conf_th,
93
  image_size=image_size,
 
97
  overlap_width_ratio=overlap_width_ratio,
98
  )
99
 
100
+ SahiAutoSegmentation().image_predict(
101
  source=image_path,
102
  model_type=sam_model_type,
103
  input_box=boxes,
 
106
  show=False,
107
  save=True,
108
  )
109
+
110
  return "output.png"