Spaces:
Runtime error
Runtime error
Daniel Verdu
commited on
Commit
·
be5401f
1
Parent(s):
eb91312
merged changes
Browse files- deoldify/generators.py +0 -68
deoldify/generators.py
CHANGED
@@ -1,53 +1,11 @@
|
|
1 |
-
<<<<<<< HEAD
|
2 |
-
from fastai.basics import F, nn
|
3 |
-
from fastai.basic_data import DataBunch
|
4 |
-
from fastai.basic_train import Learner
|
5 |
-
from fastai.layers import NormType
|
6 |
-
from fastai.torch_core import SplitFuncOrIdxList, to_device, apply_init
|
7 |
-
from fastai.vision import *
|
8 |
-
from fastai.vision.learner import cnn_config, create_body
|
9 |
-
=======
|
10 |
from fastai.vision import *
|
11 |
from fastai.vision.learner import cnn_config
|
12 |
-
>>>>>>> 878ecf212e9f3f2f6e923e3bfff6ec899dc40143
|
13 |
from .unet import DynamicUnetWide, DynamicUnetDeep
|
14 |
from .loss import FeatureLoss
|
15 |
from .dataset import *
|
16 |
|
17 |
# Weights are implicitly read from ./models/ folder
|
18 |
def gen_inference_wide(
|
19 |
-
<<<<<<< HEAD
|
20 |
-
root_folder: Path, weights_name: str, nf_factor: int = 2,
|
21 |
-
arch=models.resnet101
|
22 |
-
) -> Learner:
|
23 |
-
|
24 |
-
data = get_dummy_databunch()
|
25 |
-
learn = gen_learner_wide(data=data, gen_loss=F.l1_loss, nf_factor=nf_factor, arch=arch)
|
26 |
-
learn = get_inference(learn, root_folder, weights_name)
|
27 |
-
return learn
|
28 |
-
|
29 |
-
def gen_inference_deep(root_folder: Path, weights_name: str,
|
30 |
-
arch=models.resnet34, nf_factor: float = 1.5
|
31 |
-
) -> Learner:
|
32 |
-
|
33 |
-
data = get_dummy_databunch()
|
34 |
-
learn = gen_learner_deep(data=data, gen_loss=F.l1_loss, arch=arch, nf_factor=nf_factor)
|
35 |
-
learn = get_inference(learn, root_folder, weights_name)
|
36 |
-
return learn
|
37 |
-
|
38 |
-
# Weights are implicitly read from ./models/ folder
|
39 |
-
# Load loads weights from os.path.join(learner.path, learner.model_dir, weights_name)
|
40 |
-
def get_inference(learn, root_folder, weights_name) -> Learner:
|
41 |
-
learn.path = root_folder
|
42 |
-
try:
|
43 |
-
learn.load(weights_name)
|
44 |
-
print('Model loaded successfully')
|
45 |
-
except Exception as e:
|
46 |
-
print(e)
|
47 |
-
print('Error while reading the model')
|
48 |
-
learn.model.eval()
|
49 |
-
|
50 |
-
=======
|
51 |
root_folder: Path, weights_name: str, nf_factor: int = 2, arch=models.resnet101) -> Learner:
|
52 |
data = get_dummy_databunch()
|
53 |
learn = gen_learner_wide(
|
@@ -56,7 +14,6 @@ def get_inference(learn, root_folder, weights_name) -> Learner:
|
|
56 |
learn.path = root_folder
|
57 |
learn.load(weights_name)
|
58 |
learn.model.eval()
|
59 |
-
>>>>>>> 878ecf212e9f3f2f6e923e3bfff6ec899dc40143
|
60 |
return learn
|
61 |
|
62 |
|
@@ -120,12 +77,6 @@ def unet_learner_wide(
|
|
120 |
|
121 |
# ----------------------------------------------------------------------
|
122 |
|
123 |
-
<<<<<<< HEAD
|
124 |
-
def gen_learner_deep(data: ImageDataBunch, gen_loss, arch=models.resnet34,
|
125 |
-
nf_factor: float = 1.5
|
126 |
-
) -> Learner:
|
127 |
-
|
128 |
-
=======
|
129 |
# Weights are implicitly read from ./models/ folder
|
130 |
def gen_inference_deep(
|
131 |
root_folder: Path, weights_name: str, arch=models.resnet34, nf_factor: float = 1.5) -> Learner:
|
@@ -142,7 +93,6 @@ def gen_inference_deep(
|
|
142 |
def gen_learner_deep(
|
143 |
data: ImageDataBunch, gen_loss, arch=models.resnet34, nf_factor: float = 1.5
|
144 |
) -> Learner:
|
145 |
-
>>>>>>> 878ecf212e9f3f2f6e923e3bfff6ec899dc40143
|
146 |
return unet_learner_deep(
|
147 |
data,
|
148 |
arch,
|
@@ -158,23 +108,6 @@ def gen_learner_deep(
|
|
158 |
|
159 |
# The code below is meant to be merged into fastaiv1 ideally
|
160 |
def unet_learner_deep(
|
161 |
-
<<<<<<< HEAD
|
162 |
-
data: DataBunch,
|
163 |
-
arch: Callable,
|
164 |
-
pretrained: bool = True,
|
165 |
-
blur_final: bool = True,
|
166 |
-
norm_type: Optional[NormType] = NormType,
|
167 |
-
split_on: Optional[SplitFuncOrIdxList] = None,
|
168 |
-
blur: bool = False,
|
169 |
-
self_attention: bool = False,
|
170 |
-
y_range: Optional[Tuple[float, float]] = None,
|
171 |
-
last_cross: bool = True,
|
172 |
-
bottle: bool = False,
|
173 |
-
nf_factor: float = 1.5,
|
174 |
-
**kwargs: Any
|
175 |
-
) -> Learner:
|
176 |
-
|
177 |
-
=======
|
178 |
data: DataBunch,
|
179 |
arch: Callable,
|
180 |
pretrained: bool = True,
|
@@ -189,7 +122,6 @@ def unet_learner_deep(
|
|
189 |
nf_factor: float = 1.5,
|
190 |
**kwargs: Any
|
191 |
) -> Learner:
|
192 |
-
>>>>>>> 878ecf212e9f3f2f6e923e3bfff6ec899dc40143
|
193 |
"Build Unet learner from `data` and `arch`."
|
194 |
meta = cnn_config(arch)
|
195 |
body = create_body(arch, pretrained)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
from fastai.vision import *
|
2 |
from fastai.vision.learner import cnn_config
|
|
|
3 |
from .unet import DynamicUnetWide, DynamicUnetDeep
|
4 |
from .loss import FeatureLoss
|
5 |
from .dataset import *
|
6 |
|
7 |
# Weights are implicitly read from ./models/ folder
|
8 |
def gen_inference_wide(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
root_folder: Path, weights_name: str, nf_factor: int = 2, arch=models.resnet101) -> Learner:
|
10 |
data = get_dummy_databunch()
|
11 |
learn = gen_learner_wide(
|
|
|
14 |
learn.path = root_folder
|
15 |
learn.load(weights_name)
|
16 |
learn.model.eval()
|
|
|
17 |
return learn
|
18 |
|
19 |
|
|
|
77 |
|
78 |
# ----------------------------------------------------------------------
|
79 |
|
|
|
|
|
|
|
|
|
|
|
|
|
80 |
# Weights are implicitly read from ./models/ folder
|
81 |
def gen_inference_deep(
|
82 |
root_folder: Path, weights_name: str, arch=models.resnet34, nf_factor: float = 1.5) -> Learner:
|
|
|
93 |
def gen_learner_deep(
|
94 |
data: ImageDataBunch, gen_loss, arch=models.resnet34, nf_factor: float = 1.5
|
95 |
) -> Learner:
|
|
|
96 |
return unet_learner_deep(
|
97 |
data,
|
98 |
arch,
|
|
|
108 |
|
109 |
# The code below is meant to be merged into fastaiv1 ideally
|
110 |
def unet_learner_deep(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
111 |
data: DataBunch,
|
112 |
arch: Callable,
|
113 |
pretrained: bool = True,
|
|
|
122 |
nf_factor: float = 1.5,
|
123 |
**kwargs: Any
|
124 |
) -> Learner:
|
|
|
125 |
"Build Unet learner from `data` and `arch`."
|
126 |
meta = cnn_config(arch)
|
127 |
body = create_body(arch, pretrained)
|