Daniel Verdu
added progress bar
eec16fc
raw
history blame
8.39 kB
# Import general purpose libraries
import os, sys, re
import streamlit as st
import PIL
from PIL import Image
import cv2
import numpy as np
import uuid
from zipfile import ZipFile, ZIP_DEFLATED
from io import BytesIO
from stqdm import stqdm
# Import util functions from deoldify
# NOTE: This must be the first call in order to work properly!
from deoldify import device
from deoldify.device_id import DeviceId
#choices: CPU, GPU0...GPU7
device.set(device=DeviceId.CPU)
from deoldify.visualize import *
# Import util functions from app_utils
from app_utils import get_model_bin
####### INPUT PARAMS ###########
model_folder = 'models/'
max_img_size = 800
################################
@st.cache(allow_output_mutation=True, show_spinner=False)
def load_model(model_dir, option):
if option.lower() == 'artistic':
model_url = 'https://data.deepai.org/deoldify/ColorizeArtistic_gen.pth'
get_model_bin(model_url, os.path.join(model_dir, "ColorizeArtistic_gen.pth"))
colorizer = get_image_colorizer(artistic=True)
elif option.lower() == 'stable':
model_url = "https://www.dropbox.com/s/usf7uifrctqw9rl/ColorizeStable_gen.pth?dl=0"
get_model_bin(model_url, os.path.join(model_dir, "ColorizeStable_gen.pth"))
colorizer = get_image_colorizer(artistic=False)
return colorizer
def resize_img(input_img, max_size):
img = input_img.copy()
img_height, img_width = img.shape[0],img.shape[1]
if max(img_height, img_width) > max_size:
if img_height > img_width:
new_width = img_width*(max_size/img_height)
new_height = max_size
resized_img = cv2.resize(img,(int(new_width), int(new_height)))
return resized_img
elif img_height <= img_width:
new_width = img_height*(max_size/img_width)
new_height = max_size
resized_img = cv2.resize(img,(int(new_width), int(new_height)))
return resized_img
return img
def get_image_download_link(img, filename, button_text):
button_uuid = str(uuid.uuid4()).replace('-', '')
button_id = re.sub('\d+', '', button_uuid)
buffered = BytesIO()
img.save(buffered, format="JPEG")
img_str = base64.b64encode(buffered.getvalue()).decode()
return get_button_html_code(img_str, filename, 'txt', button_id, button_text)
def get_button_html_code(data_str, filename, filetype, button_id, button_txt='Download file'):
custom_css = f"""
<style>
#{button_id} {{
background-color: rgb(255, 255, 255);
color: rgb(38, 39, 48);
padding: 0.25em 0.38em;
position: relative;
text-decoration: none;
border-radius: 4px;
border-width: 1px;
border-style: solid;
border-color: rgb(230, 234, 241);
border-image: initial;
}}
#{button_id}:hover {{
border-color: rgb(246, 51, 102);
color: rgb(246, 51, 102);
}}
#{button_id}:active {{
box-shadow: none;
background-color: rgb(246, 51, 102);
color: white;
}}
</style> """
href = custom_css + f'<a href="data:file/{filetype};base64,{data_str}" id="{button_id}" download="{filename}">{button_txt}</a>'
return href
def display_single_image(uploaded_file, img_size=800):
print('Type: ', type(uploaded_file))
st_title_message.markdown("**Processing your image, please wait** βŒ›")
img_name = uploaded_file.name
# Open the image
pil_img = PIL.Image.open(uploaded_file)
img_rgb = np.array(pil_img)
resized_img_rgb = resize_img(img_rgb, img_size)
resized_pil_img = PIL.Image.fromarray(resized_img_rgb)
# Send the image to the model
output_pil_img = colorizer.plot_transformed_pil_image(resized_pil_img, render_factor=35, compare=False)
# Plot images
st_input_img.image(resized_pil_img, 'Input image', use_column_width=True)
st_output_img.image(output_pil_img, 'Output image', use_column_width=True)
# Show download button
st_download_button.markdown(get_image_download_link(output_pil_img, img_name, 'Download Image'), unsafe_allow_html=True)
# Reset the message
st_title_message.markdown("**To begin, please upload an image** πŸ‘‡")
def process_multiple_images(uploaded_files, img_size=800):
num_imgs = len(uploaded_files)
output_images_list = []
img_names_list = []
idx = 1
for idx, uploaded_file in stqdm(enumerate(uploaded_files, start=1)):
st_title_message.markdown("**Processing image {}/{}. Please wait** βŒ›".format(idx,
num_imgs))
img_name = uploaded_file.name
img_type = uploaded_file.type
# Open the image
pil_img = PIL.Image.open(uploaded_file)
img_rgb = np.array(pil_img)
resized_img_rgb = resize_img(img_rgb, img_size)
resized_pil_img = PIL.Image.fromarray(resized_img_rgb)
# Send the image to the model
output_pil_img = colorizer.plot_transformed_pil_image(resized_pil_img, render_factor=35, compare=False)
output_images_list.append(output_pil_img)
img_names_list.append(img_name.split('.')[0])
# Zip output files
zip_path = 'processed_images.zip'
zip_buf = zip_multiple_images(output_images_list, img_names_list, zip_path)
st_download_button.download_button(
label='Download ZIP file',
data=zip_buf.read(),
file_name=zip_path,
mime="application/zip"
)
# Show message
st_title_message.markdown("**Images are ready for download** πŸ’Ύ")
def zip_multiple_images(pil_images_list, img_names_list, dest_path):
# Create zip file on memory
zip_buf = BytesIO()
with ZipFile(zip_buf, 'w', ZIP_DEFLATED) as zipObj:
for pil_img, img_name in zip(pil_images_list, img_names_list):
with BytesIO() as output:
# Save image in memory
pil_img.save(output, format="PNG")
# Read data
contents = output.getvalue()
# Write it to zip file
zipObj.writestr(img_name+".png", contents)
zip_buf.seek(0)
return zip_buf
###########################
###### STREAMLIT CODE #####
###########################
# General configuration
# st.set_page_config(layout="centered")
st.set_page_config(layout="wide")
st.set_option('deprecation.showfileUploaderEncoding', False)
st.markdown('''
<style>
.uploadedFile {display: none}
<style>''',
unsafe_allow_html=True)
# Main window configuration
st.title("Black and white colorizer")
st.markdown("This app puts color into your black and white pictures")
st_title_message = st.empty()
st_file_uploader = st.empty()
st_input_img = st.empty()
st_output_img = st.empty()
st_download_button = st.empty()
st_title_message.markdown("**Model loading, please wait** βŒ›")
# # Sidebar
st_color_option = st.sidebar.selectbox('Select colorizer mode',
('Artistic', 'Stable'))
# st.sidebar.title('Model parameters')
# det_conf_thres = st.sidebar.slider("Detector confidence threshold", 0.1, 0.9, value=0.5, step=0.1)
# det_nms_thres = st.sidebar.slider("Non-maximum supression IoU", 0.1, 0.9, value=0.4, step=0.1)
# Load models
try:
print('before loading the model')
colorizer = load_model(model_folder, st_color_option)
print('after loading the model')
except Exception as e:
colorizer = None
print('Error while loading the model. Please refresh the page')
print(e)
st_title_message.markdown("**Error while loading the model. Please refresh the page**")
if colorizer is not None:
st_title_message.markdown("**To begin, please upload an image** πŸ‘‡")
#Choose your own image
uploaded_files = []
uploaded_files = st_file_uploader.file_uploader("Upload a black and white photo",
type=['png', 'jpg', 'jpeg'],
accept_multiple_files=True)
if len(uploaded_files) == 1:
display_single_image(uploaded_files[0], max_img_size)
elif len(uploaded_files) > 1:
process_multiple_images(uploaded_files, max_img_size)