Daniel Verdu
first commit2
0cb9530
raw
history blame
5.11 kB
from fastai import *
from fastai.core import *
from fastai.torch_core import *
from fastai.callbacks import hook_outputs
import torchvision.models as models
class FeatureLoss(nn.Module):
def __init__(self, layer_wgts=[20, 70, 10]):
super().__init__()
self.m_feat = models.vgg16_bn(True).features.cuda().eval()
requires_grad(self.m_feat, False)
blocks = [
i - 1
for i, o in enumerate(children(self.m_feat))
if isinstance(o, nn.MaxPool2d)
]
layer_ids = blocks[2:5]
self.loss_features = [self.m_feat[i] for i in layer_ids]
self.hooks = hook_outputs(self.loss_features, detach=False)
self.wgts = layer_wgts
self.metric_names = ['pixel'] + [f'feat_{i}' for i in range(len(layer_ids))]
self.base_loss = F.l1_loss
def _make_features(self, x, clone=False):
self.m_feat(x)
return [(o.clone() if clone else o) for o in self.hooks.stored]
def forward(self, input, target):
out_feat = self._make_features(target, clone=True)
in_feat = self._make_features(input)
self.feat_losses = [self.base_loss(input, target)]
self.feat_losses += [
self.base_loss(f_in, f_out) * w
for f_in, f_out, w in zip(in_feat, out_feat, self.wgts)
]
self.metrics = dict(zip(self.metric_names, self.feat_losses))
return sum(self.feat_losses)
def __del__(self):
self.hooks.remove()
# Refactored code, originally from https://github.com/VinceMarron/style_transfer
class WassFeatureLoss(nn.Module):
def __init__(self, layer_wgts=[5, 15, 2], wass_wgts=[3.0, 0.7, 0.01]):
super().__init__()
self.m_feat = models.vgg16_bn(True).features.cuda().eval()
requires_grad(self.m_feat, False)
blocks = [
i - 1
for i, o in enumerate(children(self.m_feat))
if isinstance(o, nn.MaxPool2d)
]
layer_ids = blocks[2:5]
self.loss_features = [self.m_feat[i] for i in layer_ids]
self.hooks = hook_outputs(self.loss_features, detach=False)
self.wgts = layer_wgts
self.wass_wgts = wass_wgts
self.metric_names = (
['pixel']
+ [f'feat_{i}' for i in range(len(layer_ids))]
+ [f'wass_{i}' for i in range(len(layer_ids))]
)
self.base_loss = F.l1_loss
def _make_features(self, x, clone=False):
self.m_feat(x)
return [(o.clone() if clone else o) for o in self.hooks.stored]
def _calc_2_moments(self, tensor):
chans = tensor.shape[1]
tensor = tensor.view(1, chans, -1)
n = tensor.shape[2]
mu = tensor.mean(2)
tensor = (tensor - mu[:, :, None]).squeeze(0)
# Prevents nasty bug that happens very occassionally- divide by zero. Why such things happen?
if n == 0:
return None, None
cov = torch.mm(tensor, tensor.t()) / float(n)
return mu, cov
def _get_style_vals(self, tensor):
mean, cov = self._calc_2_moments(tensor)
if mean is None:
return None, None, None
eigvals, eigvects = torch.symeig(cov, eigenvectors=True)
eigroot_mat = torch.diag(torch.sqrt(eigvals.clamp(min=0)))
root_cov = torch.mm(torch.mm(eigvects, eigroot_mat), eigvects.t())
tr_cov = eigvals.clamp(min=0).sum()
return mean, tr_cov, root_cov
def _calc_l2wass_dist(
self, mean_stl, tr_cov_stl, root_cov_stl, mean_synth, cov_synth
):
tr_cov_synth = torch.symeig(cov_synth, eigenvectors=True)[0].clamp(min=0).sum()
mean_diff_squared = (mean_stl - mean_synth).pow(2).sum()
cov_prod = torch.mm(torch.mm(root_cov_stl, cov_synth), root_cov_stl)
var_overlap = torch.sqrt(
torch.symeig(cov_prod, eigenvectors=True)[0].clamp(min=0) + 1e-8
).sum()
dist = mean_diff_squared + tr_cov_stl + tr_cov_synth - 2 * var_overlap
return dist
def _single_wass_loss(self, pred, targ):
mean_test, tr_cov_test, root_cov_test = targ
mean_synth, cov_synth = self._calc_2_moments(pred)
loss = self._calc_l2wass_dist(
mean_test, tr_cov_test, root_cov_test, mean_synth, cov_synth
)
return loss
def forward(self, input, target):
out_feat = self._make_features(target, clone=True)
in_feat = self._make_features(input)
self.feat_losses = [self.base_loss(input, target)]
self.feat_losses += [
self.base_loss(f_in, f_out) * w
for f_in, f_out, w in zip(in_feat, out_feat, self.wgts)
]
styles = [self._get_style_vals(i) for i in out_feat]
if styles[0][0] is not None:
self.feat_losses += [
self._single_wass_loss(f_pred, f_targ) * w
for f_pred, f_targ, w in zip(in_feat, styles, self.wass_wgts)
]
self.metrics = dict(zip(self.metric_names, self.feat_losses))
return sum(self.feat_losses)
def __del__(self):
self.hooks.remove()