Spaces:
Runtime error
Runtime error
from fastai import * | |
from fastai.core import * | |
from fastai.torch_core import * | |
from fastai.callbacks import hook_outputs | |
import torchvision.models as models | |
class FeatureLoss(nn.Module): | |
def __init__(self, layer_wgts=[20, 70, 10]): | |
super().__init__() | |
self.m_feat = models.vgg16_bn(True).features.cuda().eval() | |
requires_grad(self.m_feat, False) | |
blocks = [ | |
i - 1 | |
for i, o in enumerate(children(self.m_feat)) | |
if isinstance(o, nn.MaxPool2d) | |
] | |
layer_ids = blocks[2:5] | |
self.loss_features = [self.m_feat[i] for i in layer_ids] | |
self.hooks = hook_outputs(self.loss_features, detach=False) | |
self.wgts = layer_wgts | |
self.metric_names = ['pixel'] + [f'feat_{i}' for i in range(len(layer_ids))] | |
self.base_loss = F.l1_loss | |
def _make_features(self, x, clone=False): | |
self.m_feat(x) | |
return [(o.clone() if clone else o) for o in self.hooks.stored] | |
def forward(self, input, target): | |
out_feat = self._make_features(target, clone=True) | |
in_feat = self._make_features(input) | |
self.feat_losses = [self.base_loss(input, target)] | |
self.feat_losses += [ | |
self.base_loss(f_in, f_out) * w | |
for f_in, f_out, w in zip(in_feat, out_feat, self.wgts) | |
] | |
self.metrics = dict(zip(self.metric_names, self.feat_losses)) | |
return sum(self.feat_losses) | |
def __del__(self): | |
self.hooks.remove() | |
# Refactored code, originally from https://github.com/VinceMarron/style_transfer | |
class WassFeatureLoss(nn.Module): | |
def __init__(self, layer_wgts=[5, 15, 2], wass_wgts=[3.0, 0.7, 0.01]): | |
super().__init__() | |
self.m_feat = models.vgg16_bn(True).features.cuda().eval() | |
requires_grad(self.m_feat, False) | |
blocks = [ | |
i - 1 | |
for i, o in enumerate(children(self.m_feat)) | |
if isinstance(o, nn.MaxPool2d) | |
] | |
layer_ids = blocks[2:5] | |
self.loss_features = [self.m_feat[i] for i in layer_ids] | |
self.hooks = hook_outputs(self.loss_features, detach=False) | |
self.wgts = layer_wgts | |
self.wass_wgts = wass_wgts | |
self.metric_names = ( | |
['pixel'] | |
+ [f'feat_{i}' for i in range(len(layer_ids))] | |
+ [f'wass_{i}' for i in range(len(layer_ids))] | |
) | |
self.base_loss = F.l1_loss | |
def _make_features(self, x, clone=False): | |
self.m_feat(x) | |
return [(o.clone() if clone else o) for o in self.hooks.stored] | |
def _calc_2_moments(self, tensor): | |
chans = tensor.shape[1] | |
tensor = tensor.view(1, chans, -1) | |
n = tensor.shape[2] | |
mu = tensor.mean(2) | |
tensor = (tensor - mu[:, :, None]).squeeze(0) | |
# Prevents nasty bug that happens very occassionally- divide by zero. Why such things happen? | |
if n == 0: | |
return None, None | |
cov = torch.mm(tensor, tensor.t()) / float(n) | |
return mu, cov | |
def _get_style_vals(self, tensor): | |
mean, cov = self._calc_2_moments(tensor) | |
if mean is None: | |
return None, None, None | |
eigvals, eigvects = torch.symeig(cov, eigenvectors=True) | |
eigroot_mat = torch.diag(torch.sqrt(eigvals.clamp(min=0))) | |
root_cov = torch.mm(torch.mm(eigvects, eigroot_mat), eigvects.t()) | |
tr_cov = eigvals.clamp(min=0).sum() | |
return mean, tr_cov, root_cov | |
def _calc_l2wass_dist( | |
self, mean_stl, tr_cov_stl, root_cov_stl, mean_synth, cov_synth | |
): | |
tr_cov_synth = torch.symeig(cov_synth, eigenvectors=True)[0].clamp(min=0).sum() | |
mean_diff_squared = (mean_stl - mean_synth).pow(2).sum() | |
cov_prod = torch.mm(torch.mm(root_cov_stl, cov_synth), root_cov_stl) | |
var_overlap = torch.sqrt( | |
torch.symeig(cov_prod, eigenvectors=True)[0].clamp(min=0) + 1e-8 | |
).sum() | |
dist = mean_diff_squared + tr_cov_stl + tr_cov_synth - 2 * var_overlap | |
return dist | |
def _single_wass_loss(self, pred, targ): | |
mean_test, tr_cov_test, root_cov_test = targ | |
mean_synth, cov_synth = self._calc_2_moments(pred) | |
loss = self._calc_l2wass_dist( | |
mean_test, tr_cov_test, root_cov_test, mean_synth, cov_synth | |
) | |
return loss | |
def forward(self, input, target): | |
out_feat = self._make_features(target, clone=True) | |
in_feat = self._make_features(input) | |
self.feat_losses = [self.base_loss(input, target)] | |
self.feat_losses += [ | |
self.base_loss(f_in, f_out) * w | |
for f_in, f_out, w in zip(in_feat, out_feat, self.wgts) | |
] | |
styles = [self._get_style_vals(i) for i in out_feat] | |
if styles[0][0] is not None: | |
self.feat_losses += [ | |
self._single_wass_loss(f_pred, f_targ) * w | |
for f_pred, f_targ, w in zip(in_feat, styles, self.wass_wgts) | |
] | |
self.metrics = dict(zip(self.metric_names, self.feat_losses)) | |
return sum(self.feat_losses) | |
def __del__(self): | |
self.hooks.remove() | |