Daniel Verdu
first commit in hf_spaces
9e08039
raw
history blame
9.42 kB
from fastai.layers import *
from .layers import *
from fastai.torch_core import *
from fastai.callbacks.hooks import *
from fastai.vision import *
# The code below is meant to be merged into fastaiv1 ideally
__all__ = ['DynamicUnetDeep', 'DynamicUnetWide']
def _get_sfs_idxs(sizes: Sizes) -> List[int]:
"Get the indexes of the layers where the size of the activation changes."
feature_szs = [size[-1] for size in sizes]
sfs_idxs = list(
np.where(np.array(feature_szs[:-1]) != np.array(feature_szs[1:]))[0]
)
if feature_szs[0] != feature_szs[1]:
sfs_idxs = [0] + sfs_idxs
return sfs_idxs
class CustomPixelShuffle_ICNR(nn.Module):
"Upsample by `scale` from `ni` filters to `nf` (default `ni`), using `nn.PixelShuffle`, `icnr` init, and `weight_norm`."
def __init__(
self,
ni: int,
nf: int = None,
scale: int = 2,
blur: bool = False,
leaky: float = None,
**kwargs
):
super().__init__()
nf = ifnone(nf, ni)
self.conv = custom_conv_layer(
ni, nf * (scale ** 2), ks=1, use_activ=False, **kwargs
)
icnr(self.conv[0].weight)
self.shuf = nn.PixelShuffle(scale)
# Blurring over (h*w) kernel
# "Super-Resolution using Convolutional Neural Networks without Any Checkerboard Artifacts"
# - https://arxiv.org/abs/1806.02658
self.pad = nn.ReplicationPad2d((1, 0, 1, 0))
self.blur = nn.AvgPool2d(2, stride=1)
self.relu = relu(True, leaky=leaky)
def forward(self, x):
x = self.shuf(self.relu(self.conv(x)))
return self.blur(self.pad(x)) if self.blur else x
class UnetBlockDeep(nn.Module):
"A quasi-UNet block, using `PixelShuffle_ICNR upsampling`."
def __init__(
self,
up_in_c: int,
x_in_c: int,
hook: Hook,
final_div: bool = True,
blur: bool = False,
leaky: float = None,
self_attention: bool = False,
nf_factor: float = 1.0,
**kwargs
):
super().__init__()
self.hook = hook
self.shuf = CustomPixelShuffle_ICNR(
up_in_c, up_in_c // 2, blur=blur, leaky=leaky, **kwargs
)
self.bn = batchnorm_2d(x_in_c)
ni = up_in_c // 2 + x_in_c
nf = int((ni if final_div else ni // 2) * nf_factor)
self.conv1 = custom_conv_layer(ni, nf, leaky=leaky, **kwargs)
self.conv2 = custom_conv_layer(
nf, nf, leaky=leaky, self_attention=self_attention, **kwargs
)
self.relu = relu(leaky=leaky)
def forward(self, up_in: Tensor) -> Tensor:
s = self.hook.stored
up_out = self.shuf(up_in)
ssh = s.shape[-2:]
if ssh != up_out.shape[-2:]:
up_out = F.interpolate(up_out, s.shape[-2:], mode='nearest')
cat_x = self.relu(torch.cat([up_out, self.bn(s)], dim=1))
return self.conv2(self.conv1(cat_x))
class DynamicUnetDeep(SequentialEx):
"Create a U-Net from a given architecture."
def __init__(
self,
encoder: nn.Module,
n_classes: int,
blur: bool = False,
blur_final=True,
self_attention: bool = False,
y_range: Optional[Tuple[float, float]] = None,
last_cross: bool = True,
bottle: bool = False,
norm_type: Optional[NormType] = NormType.Batch,
nf_factor: float = 1.0,
**kwargs
):
extra_bn = norm_type == NormType.Spectral
imsize = (256, 256)
sfs_szs = model_sizes(encoder, size=imsize)
sfs_idxs = list(reversed(_get_sfs_idxs(sfs_szs)))
self.sfs = hook_outputs([encoder[i] for i in sfs_idxs], detach=False)
x = dummy_eval(encoder, imsize).detach()
ni = sfs_szs[-1][1]
middle_conv = nn.Sequential(
custom_conv_layer(
ni, ni * 2, norm_type=norm_type, extra_bn=extra_bn, **kwargs
),
custom_conv_layer(
ni * 2, ni, norm_type=norm_type, extra_bn=extra_bn, **kwargs
),
).eval()
x = middle_conv(x)
layers = [encoder, batchnorm_2d(ni), nn.ReLU(), middle_conv]
for i, idx in enumerate(sfs_idxs):
not_final = i != len(sfs_idxs) - 1
up_in_c, x_in_c = int(x.shape[1]), int(sfs_szs[idx][1])
do_blur = blur and (not_final or blur_final)
sa = self_attention and (i == len(sfs_idxs) - 3)
unet_block = UnetBlockDeep(
up_in_c,
x_in_c,
self.sfs[i],
final_div=not_final,
blur=blur,
self_attention=sa,
norm_type=norm_type,
extra_bn=extra_bn,
nf_factor=nf_factor,
**kwargs
).eval()
layers.append(unet_block)
x = unet_block(x)
ni = x.shape[1]
if imsize != sfs_szs[0][-2:]:
layers.append(PixelShuffle_ICNR(ni, **kwargs))
if last_cross:
layers.append(MergeLayer(dense=True))
ni += in_channels(encoder)
layers.append(res_block(ni, bottle=bottle, norm_type=norm_type, **kwargs))
layers += [
custom_conv_layer(ni, n_classes, ks=1, use_activ=False, norm_type=norm_type)
]
if y_range is not None:
layers.append(SigmoidRange(*y_range))
super().__init__(*layers)
def __del__(self):
if hasattr(self, "sfs"):
self.sfs.remove()
# ------------------------------------------------------
class UnetBlockWide(nn.Module):
"A quasi-UNet block, using `PixelShuffle_ICNR upsampling`."
def __init__(
self,
up_in_c: int,
x_in_c: int,
n_out: int,
hook: Hook,
final_div: bool = True,
blur: bool = False,
leaky: float = None,
self_attention: bool = False,
**kwargs
):
super().__init__()
self.hook = hook
up_out = x_out = n_out // 2
self.shuf = CustomPixelShuffle_ICNR(
up_in_c, up_out, blur=blur, leaky=leaky, **kwargs
)
self.bn = batchnorm_2d(x_in_c)
ni = up_out + x_in_c
self.conv = custom_conv_layer(
ni, x_out, leaky=leaky, self_attention=self_attention, **kwargs
)
self.relu = relu(leaky=leaky)
def forward(self, up_in: Tensor) -> Tensor:
s = self.hook.stored
up_out = self.shuf(up_in)
ssh = s.shape[-2:]
if ssh != up_out.shape[-2:]:
up_out = F.interpolate(up_out, s.shape[-2:], mode='nearest')
cat_x = self.relu(torch.cat([up_out, self.bn(s)], dim=1))
return self.conv(cat_x)
class DynamicUnetWide(SequentialEx):
"Create a U-Net from a given architecture."
def __init__(
self,
encoder: nn.Module,
n_classes: int,
blur: bool = False,
blur_final=True,
self_attention: bool = False,
y_range: Optional[Tuple[float, float]] = None,
last_cross: bool = True,
bottle: bool = False,
norm_type: Optional[NormType] = NormType.Batch,
nf_factor: int = 1,
**kwargs
):
nf = 512 * nf_factor
extra_bn = norm_type == NormType.Spectral
imsize = (256, 256)
sfs_szs = model_sizes(encoder, size=imsize)
sfs_idxs = list(reversed(_get_sfs_idxs(sfs_szs)))
self.sfs = hook_outputs([encoder[i] for i in sfs_idxs], detach=False)
x = dummy_eval(encoder, imsize).detach()
ni = sfs_szs[-1][1]
middle_conv = nn.Sequential(
custom_conv_layer(
ni, ni * 2, norm_type=norm_type, extra_bn=extra_bn, **kwargs
),
custom_conv_layer(
ni * 2, ni, norm_type=norm_type, extra_bn=extra_bn, **kwargs
),
).eval()
x = middle_conv(x)
layers = [encoder, batchnorm_2d(ni), nn.ReLU(), middle_conv]
for i, idx in enumerate(sfs_idxs):
not_final = i != len(sfs_idxs) - 1
up_in_c, x_in_c = int(x.shape[1]), int(sfs_szs[idx][1])
do_blur = blur and (not_final or blur_final)
sa = self_attention and (i == len(sfs_idxs) - 3)
n_out = nf if not_final else nf // 2
unet_block = UnetBlockWide(
up_in_c,
x_in_c,
n_out,
self.sfs[i],
final_div=not_final,
blur=blur,
self_attention=sa,
norm_type=norm_type,
extra_bn=extra_bn,
**kwargs
).eval()
layers.append(unet_block)
x = unet_block(x)
ni = x.shape[1]
if imsize != sfs_szs[0][-2:]:
layers.append(PixelShuffle_ICNR(ni, **kwargs))
if last_cross:
layers.append(MergeLayer(dense=True))
ni += in_channels(encoder)
layers.append(res_block(ni, bottle=bottle, norm_type=norm_type, **kwargs))
layers += [
custom_conv_layer(ni, n_classes, ks=1, use_activ=False, norm_type=norm_type)
]
if y_range is not None:
layers.append(SigmoidRange(*y_range))
super().__init__(*layers)
def __del__(self):
if hasattr(self, "sfs"):
self.sfs.remove()