Spaces:
Runtime error
Runtime error
davebulaval
commited on
Commit
•
4e0f879
1
Parent(s):
04f1736
improve processing and doc
Browse files- code_examples.py +29 -0
- meaningbert.py +20 -8
code_examples.py
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
|
3 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
4 |
+
|
5 |
+
tokenizer = AutoTokenizer.from_pretrained("davebulaval/MeaningBERT")
|
6 |
+
scorer = AutoModelForSequenceClassification.from_pretrained("davebulaval/MeaningBERT")
|
7 |
+
scorer.eval()
|
8 |
+
|
9 |
+
documents = [
|
10 |
+
"He wanted to make them pay.",
|
11 |
+
"This sandwich looks delicious.",
|
12 |
+
"He wants to eat.",
|
13 |
+
]
|
14 |
+
simplifications = [
|
15 |
+
"He wanted to make them pay.",
|
16 |
+
"This sandwich looks delicious.",
|
17 |
+
"Whatever, whenever, this is a sentence.",
|
18 |
+
]
|
19 |
+
|
20 |
+
# We tokenize the text as a pair and return Pytorch Tensors
|
21 |
+
tokenize_text = tokenizer(
|
22 |
+
documents, simplifications, truncation=True, padding=True, return_tensors="pt"
|
23 |
+
)
|
24 |
+
|
25 |
+
with torch.no_grad():
|
26 |
+
# We process the text
|
27 |
+
scores = scorer(**tokenize_text)
|
28 |
+
|
29 |
+
print(scores.logits.tolist())
|
meaningbert.py
CHANGED
@@ -24,7 +24,9 @@ from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
|
24 |
@contextmanager
|
25 |
def filter_logging_context():
|
26 |
def filter_log(record):
|
27 |
-
return
|
|
|
|
|
28 |
|
29 |
logger = datasets.utils.logging.get_logger("transformers.modeling_utils")
|
30 |
logger.addFilter(filter_log)
|
@@ -105,23 +107,33 @@ class MeaningBERTScore(evaluate.Metric):
|
|
105 |
)
|
106 |
|
107 |
def _compute(
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
) -> Dict:
|
113 |
assert len(documents) == len(
|
114 |
-
simplifications
|
|
|
115 |
hashcode = _HASH
|
116 |
|
117 |
# We load the MeaningBERT pretrained model
|
118 |
-
scorer = AutoModelForSequenceClassification.from_pretrained(
|
|
|
|
|
|
|
119 |
|
120 |
# We load MeaningBERT tokenizer
|
121 |
tokenizer = AutoTokenizer.from_pretrained("davebulaval/MeaningBERT")
|
122 |
|
123 |
# We tokenize the text as a pair and return Pytorch Tensors
|
124 |
-
tokenize_text = tokenizer(
|
|
|
|
|
|
|
|
|
|
|
|
|
125 |
|
126 |
with filter_logging_context():
|
127 |
# We process the text
|
|
|
24 |
@contextmanager
|
25 |
def filter_logging_context():
|
26 |
def filter_log(record):
|
27 |
+
return (
|
28 |
+
False if "This IS expected if you are initializing" in record.msg else True
|
29 |
+
)
|
30 |
|
31 |
logger = datasets.utils.logging.get_logger("transformers.modeling_utils")
|
32 |
logger.addFilter(filter_log)
|
|
|
107 |
)
|
108 |
|
109 |
def _compute(
|
110 |
+
self,
|
111 |
+
documents: List,
|
112 |
+
simplifications: List,
|
113 |
+
verbose: bool = False,
|
114 |
) -> Dict:
|
115 |
assert len(documents) == len(
|
116 |
+
simplifications
|
117 |
+
), "The number of document is different of the number of simplifications."
|
118 |
hashcode = _HASH
|
119 |
|
120 |
# We load the MeaningBERT pretrained model
|
121 |
+
scorer = AutoModelForSequenceClassification.from_pretrained(
|
122 |
+
"davebulaval/MeaningBERT"
|
123 |
+
)
|
124 |
+
scorer.eval()
|
125 |
|
126 |
# We load MeaningBERT tokenizer
|
127 |
tokenizer = AutoTokenizer.from_pretrained("davebulaval/MeaningBERT")
|
128 |
|
129 |
# We tokenize the text as a pair and return Pytorch Tensors
|
130 |
+
tokenize_text = tokenizer(
|
131 |
+
documents,
|
132 |
+
simplifications,
|
133 |
+
truncation=True,
|
134 |
+
padding=True,
|
135 |
+
return_tensors="pt",
|
136 |
+
)
|
137 |
|
138 |
with filter_logging_context():
|
139 |
# We process the text
|