Spaces:
Running
on
Zero
Running
on
Zero
Commit
Β·
caebeb2
1
Parent(s):
bbe7feb
Refactor app.py for improved readability and consistency; streamline model loading and update extraction prompt.
Browse files
app.py
CHANGED
|
@@ -12,9 +12,7 @@ os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1"
|
|
| 12 |
# Load model and processor
|
| 13 |
print("Loading Qwen3-VL-30B-A3B-Instruct model...")
|
| 14 |
model = AutoModelForImageTextToText.from_pretrained(
|
| 15 |
-
"Qwen/Qwen3-VL-30B-A3B-Instruct",
|
| 16 |
-
torch_dtype=torch.bfloat16,
|
| 17 |
-
device_map="auto"
|
| 18 |
)
|
| 19 |
processor = AutoProcessor.from_pretrained("Qwen/Qwen3-VL-30B-A3B-Instruct")
|
| 20 |
print("Model loaded successfully!")
|
|
@@ -25,10 +23,10 @@ EXTRACTION_PROMPT = """Extract all metadata from this library catalog card and r
|
|
| 25 |
- date: Any dates mentioned (publication, creation, or coverage dates)
|
| 26 |
- call_number: Library classification or call number
|
| 27 |
- physical_description: Details about the physical item (size, extent, format)
|
| 28 |
-
- subjects: Subject headings or topics
|
| 29 |
- notes: Any additional notes or information
|
| 30 |
|
| 31 |
-
Return
|
|
|
|
| 32 |
|
| 33 |
@spaces.GPU
|
| 34 |
def extract_metadata(image):
|
|
@@ -47,8 +45,8 @@ def extract_metadata(image):
|
|
| 47 |
"role": "user",
|
| 48 |
"content": [
|
| 49 |
{"type": "image", "image": image},
|
| 50 |
-
{"type": "text", "text": EXTRACTION_PROMPT}
|
| 51 |
-
]
|
| 52 |
}
|
| 53 |
]
|
| 54 |
|
|
@@ -63,29 +61,27 @@ def extract_metadata(image):
|
|
| 63 |
images=image_inputs,
|
| 64 |
videos=video_inputs,
|
| 65 |
padding=True,
|
| 66 |
-
return_tensors="pt"
|
| 67 |
)
|
| 68 |
inputs = inputs.to(model.device)
|
| 69 |
|
| 70 |
# Generate
|
| 71 |
with torch.inference_mode():
|
| 72 |
generated_ids = model.generate(
|
| 73 |
-
**inputs,
|
| 74 |
-
max_new_tokens=512,
|
| 75 |
-
temperature=0.1,
|
| 76 |
-
do_sample=False
|
| 77 |
)
|
| 78 |
|
| 79 |
# Trim input tokens from output
|
| 80 |
generated_ids_trimmed = [
|
| 81 |
-
out_ids[len(in_ids):]
|
|
|
|
| 82 |
]
|
| 83 |
|
| 84 |
# Decode output
|
| 85 |
output_text = processor.batch_decode(
|
| 86 |
generated_ids_trimmed,
|
| 87 |
skip_special_tokens=True,
|
| 88 |
-
clean_up_tokenization_spaces=False
|
| 89 |
)[0]
|
| 90 |
|
| 91 |
# Try to parse as JSON for pretty formatting
|
|
@@ -99,11 +95,12 @@ def extract_metadata(image):
|
|
| 99 |
except Exception as e:
|
| 100 |
return f"Error during extraction: {str(e)}"
|
| 101 |
|
|
|
|
| 102 |
# Create Gradio interface
|
| 103 |
with gr.Blocks(title="Library Card Metadata Extractor") as demo:
|
| 104 |
gr.Markdown("# π Library Card Metadata Extractor")
|
| 105 |
gr.Markdown(
|
| 106 |
-
"Extract structured metadata from library catalog cards using **Qwen3-VL-30B**. "
|
| 107 |
"Upload an image of a catalog card and get JSON-formatted metadata including title, author, dates, "
|
| 108 |
"call numbers, and more.\n\n"
|
| 109 |
"This demo works with catalog cards from libraries and archives, such as the "
|
|
@@ -116,25 +113,14 @@ with gr.Blocks(title="Library Card Metadata Extractor") as demo:
|
|
| 116 |
with gr.Row():
|
| 117 |
with gr.Column(scale=1):
|
| 118 |
gr.Markdown("### π€ Upload Catalog Card")
|
| 119 |
-
image_input = gr.Image(
|
| 120 |
-
label="Library Catalog Card",
|
| 121 |
-
type="pil"
|
| 122 |
-
)
|
| 123 |
submit_btn = gr.Button("π Extract Metadata", variant="primary", size="lg")
|
| 124 |
|
| 125 |
with gr.Column(scale=1):
|
| 126 |
gr.Markdown("### π Extracted Metadata (JSON)")
|
| 127 |
-
output = gr.Code(
|
| 128 |
-
label="Metadata",
|
| 129 |
-
language="json",
|
| 130 |
-
lines=15
|
| 131 |
-
)
|
| 132 |
|
| 133 |
-
submit_btn.click(
|
| 134 |
-
fn=extract_metadata,
|
| 135 |
-
inputs=image_input,
|
| 136 |
-
outputs=output
|
| 137 |
-
)
|
| 138 |
|
| 139 |
gr.Markdown("---")
|
| 140 |
|
|
@@ -152,7 +138,7 @@ with gr.Blocks(title="Library Card Metadata Extractor") as demo:
|
|
| 152 |
inputs=image_input,
|
| 153 |
outputs=output,
|
| 154 |
fn=extract_metadata,
|
| 155 |
-
cache_examples=False
|
| 156 |
)
|
| 157 |
|
| 158 |
gr.Markdown("---")
|
|
|
|
| 12 |
# Load model and processor
|
| 13 |
print("Loading Qwen3-VL-30B-A3B-Instruct model...")
|
| 14 |
model = AutoModelForImageTextToText.from_pretrained(
|
| 15 |
+
"Qwen/Qwen3-VL-30B-A3B-Instruct", torch_dtype=torch.bfloat16, device_map="auto"
|
|
|
|
|
|
|
| 16 |
)
|
| 17 |
processor = AutoProcessor.from_pretrained("Qwen/Qwen3-VL-30B-A3B-Instruct")
|
| 18 |
print("Model loaded successfully!")
|
|
|
|
| 23 |
- date: Any dates mentioned (publication, creation, or coverage dates)
|
| 24 |
- call_number: Library classification or call number
|
| 25 |
- physical_description: Details about the physical item (size, extent, format)
|
|
|
|
| 26 |
- notes: Any additional notes or information
|
| 27 |
|
| 28 |
+
Return NLY the JSON object, nothing else. If a field is not present on the card, use null for that field."""
|
| 29 |
+
|
| 30 |
|
| 31 |
@spaces.GPU
|
| 32 |
def extract_metadata(image):
|
|
|
|
| 45 |
"role": "user",
|
| 46 |
"content": [
|
| 47 |
{"type": "image", "image": image},
|
| 48 |
+
{"type": "text", "text": EXTRACTION_PROMPT},
|
| 49 |
+
],
|
| 50 |
}
|
| 51 |
]
|
| 52 |
|
|
|
|
| 61 |
images=image_inputs,
|
| 62 |
videos=video_inputs,
|
| 63 |
padding=True,
|
| 64 |
+
return_tensors="pt",
|
| 65 |
)
|
| 66 |
inputs = inputs.to(model.device)
|
| 67 |
|
| 68 |
# Generate
|
| 69 |
with torch.inference_mode():
|
| 70 |
generated_ids = model.generate(
|
| 71 |
+
**inputs, max_new_tokens=512, temperature=0.1, do_sample=False
|
|
|
|
|
|
|
|
|
|
| 72 |
)
|
| 73 |
|
| 74 |
# Trim input tokens from output
|
| 75 |
generated_ids_trimmed = [
|
| 76 |
+
out_ids[len(in_ids) :]
|
| 77 |
+
for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
|
| 78 |
]
|
| 79 |
|
| 80 |
# Decode output
|
| 81 |
output_text = processor.batch_decode(
|
| 82 |
generated_ids_trimmed,
|
| 83 |
skip_special_tokens=True,
|
| 84 |
+
clean_up_tokenization_spaces=False,
|
| 85 |
)[0]
|
| 86 |
|
| 87 |
# Try to parse as JSON for pretty formatting
|
|
|
|
| 95 |
except Exception as e:
|
| 96 |
return f"Error during extraction: {str(e)}"
|
| 97 |
|
| 98 |
+
|
| 99 |
# Create Gradio interface
|
| 100 |
with gr.Blocks(title="Library Card Metadata Extractor") as demo:
|
| 101 |
gr.Markdown("# π Library Card Metadata Extractor")
|
| 102 |
gr.Markdown(
|
| 103 |
+
"Extract structured metadata from library catalog cards using **Qwen/Qwen3-VL-30B-A3B-Instruct**. "
|
| 104 |
"Upload an image of a catalog card and get JSON-formatted metadata including title, author, dates, "
|
| 105 |
"call numbers, and more.\n\n"
|
| 106 |
"This demo works with catalog cards from libraries and archives, such as the "
|
|
|
|
| 113 |
with gr.Row():
|
| 114 |
with gr.Column(scale=1):
|
| 115 |
gr.Markdown("### π€ Upload Catalog Card")
|
| 116 |
+
image_input = gr.Image(label="Library Catalog Card", type="pil")
|
|
|
|
|
|
|
|
|
|
| 117 |
submit_btn = gr.Button("π Extract Metadata", variant="primary", size="lg")
|
| 118 |
|
| 119 |
with gr.Column(scale=1):
|
| 120 |
gr.Markdown("### π Extracted Metadata (JSON)")
|
| 121 |
+
output = gr.Code(label="Metadata", language="json", lines=15)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 122 |
|
| 123 |
+
submit_btn.click(fn=extract_metadata, inputs=image_input, outputs=output)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 124 |
|
| 125 |
gr.Markdown("---")
|
| 126 |
|
|
|
|
| 138 |
inputs=image_input,
|
| 139 |
outputs=output,
|
| 140 |
fn=extract_metadata,
|
| 141 |
+
cache_examples=False,
|
| 142 |
)
|
| 143 |
|
| 144 |
gr.Markdown("---")
|