dataset-tldr / main.py
davanstrien's picture
davanstrien HF staff
Add fastapi.responses and starlette.responses imports
41869c7
raw
history blame
8.37 kB
import os
import random
from pathlib import Path
from statistics import mean
from typing import Any, Iterator, Union
from fastapi.responses import HTMLResponse
import fasttext
from dotenv import load_dotenv
from fastapi import FastAPI
from httpx import AsyncClient, Client, Timeout
from huggingface_hub import hf_hub_download
from huggingface_hub.utils import logging
from toolz import concat, groupby, valmap
from starlette.responses import RedirectResponse
app = FastAPI()
logger = logging.get_logger(__name__)
load_dotenv()
HF_TOKEN = os.getenv("HF_TOKEN")
os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1"
FASTTEXT_PREFIX_LENGTH = 9 # fasttext labels are formatted like "__label__eng_Latn"
BASE_DATASETS_SERVER_URL = "https://datasets-server.huggingface.co"
DEFAULT_FAST_TEXT_MODEL = "facebook/fasttext-language-identification"
headers = {
"authorization": f"Bearer ${HF_TOKEN}",
}
timeout = Timeout(60, read=120)
client = Client(headers=headers, timeout=timeout)
async_client = AsyncClient(headers=headers, timeout=timeout)
TARGET_COLUMN_NAMES = {
"text",
"input",
"tokens",
"prompt",
"instruction",
"sentence_1",
"question",
"sentence2",
"answer",
"sentence",
"response",
"context",
"query",
"chosen",
"rejected",
}
def datasets_server_valid_rows(hub_id: str):
try:
resp = client.get(f"{BASE_DATASETS_SERVER_URL}/is-valid?dataset={hub_id}")
return resp.json()["viewer"]
except Exception as e:
logger.error(f"Failed to get is-valid for {hub_id}: {e}")
return False
async def get_first_config_and_split_name(hub_id: str):
try:
resp = await async_client.get(
f"https://datasets-server.huggingface.co/splits?dataset={hub_id}"
)
data = resp.json()
return data["splits"][0]["config"], data["splits"][0]["split"]
except Exception as e:
logger.error(f"Failed to get splits for {hub_id}: {e}")
return None
async def get_dataset_info(hub_id: str, config: str | None = None):
if config is None:
config = get_first_config_and_split_name(hub_id)
if config is None:
return None
else:
config = config[0]
resp = await async_client.get(
f"{BASE_DATASETS_SERVER_URL}/info?dataset={hub_id}&config={config}"
)
resp.raise_for_status()
return resp.json()
async def get_random_rows(
hub_id: str,
total_length: int,
number_of_rows: int,
max_request_calls: int,
config="default",
split="train",
):
rows = []
rows_per_call = min(
number_of_rows // max_request_calls, total_length // max_request_calls
)
rows_per_call = min(rows_per_call, 100) # Ensure rows_per_call is not more than 100
for _ in range(min(max_request_calls, number_of_rows // rows_per_call)):
offset = random.randint(0, total_length - rows_per_call)
url = f"https://datasets-server.huggingface.co/rows?dataset={hub_id}&config={config}&split={split}&offset={offset}&length={rows_per_call}"
logger.info(f"Fetching {url}")
print(url)
response = await async_client.get(url)
if response.status_code == 200:
data = response.json()
batch_rows = data.get("rows")
rows.extend(batch_rows)
else:
print(f"Failed to fetch data: {response.status_code}")
print(url)
if len(rows) >= number_of_rows:
break
return [row.get("row") for row in rows]
def load_model(repo_id: str) -> fasttext.FastText._FastText:
Path("code/models").mkdir(parents=True, exist_ok=True)
model_path = hf_hub_download(
repo_id,
"model.bin",
cache_dir="code/models",
local_dir="code/models",
local_dir_use_symlinks=False,
)
return fasttext.load_model(model_path)
model = load_model(DEFAULT_FAST_TEXT_MODEL)
def yield_clean_rows(rows: Union[list[str], str], min_length: int = 3) -> Iterator[str]:
for row in rows:
if isinstance(row, str):
# split on lines and remove empty lines
line = row.split("\n")
for line in line:
if line:
yield line
elif isinstance(row, list):
try:
line = " ".join(row)
if len(line) < min_length:
continue
else:
yield line
except TypeError:
continue
def model_predict(inputs: str, k=1) -> list[dict[str, float]]:
predictions = model.predict(inputs, k=k)
return [
{"label": label[FASTTEXT_PREFIX_LENGTH:], "score": prob}
for label, prob in zip(predictions[0], predictions[1])
]
def get_label(x):
return x.get("label")
def get_mean_score(preds):
return mean([pred.get("score") for pred in preds])
def filter_by_frequency(counts_dict: dict, threshold_percent: float = 0.2):
"""Filter a dict to include items whose value is above `threshold_percent`"""
total = sum(counts_dict.values())
threshold = total * threshold_percent
return {k for k, v in counts_dict.items() if v >= threshold}
def predict_rows(rows, target_column, language_threshold_percent=0.2):
rows = (row.get(target_column) for row in rows)
rows = (row for row in rows if row is not None)
rows = list(yield_clean_rows(rows))
predictions = [model_predict(row) for row in rows]
predictions = [pred for pred in predictions if pred is not None]
predictions = list(concat(predictions))
predictions_by_lang = groupby(get_label, predictions)
langues_counts = valmap(len, predictions_by_lang)
keys_to_keep = filter_by_frequency(
langues_counts, threshold_percent=language_threshold_percent
)
filtered_dict = {k: v for k, v in predictions_by_lang.items() if k in keys_to_keep}
return {
"predictions": dict(valmap(get_mean_score, filtered_dict)),
"pred": predictions,
}
# @app.get("/", response_class=HTMLResponse)
# async def read_index():
# html_content = Path("index.html").read_text()
# return HTMLResponse(content=html_content)
@app.get("/", include_in_schema=False)
def root():
return RedirectResponse(url="/docs")
@app.get("/predict_dataset_language/{hub_id}")
async def predict_language(
hub_id: str,
config: str | None = None,
split: str | None = None,
max_request_calls: int = 10,
number_of_rows: int = 1000,
) -> dict[Any, Any] | None:
is_valid = datasets_server_valid_rows(hub_id)
if not is_valid:
logger.error(f"Dataset {hub_id} is not accessible via the datasets server.")
if not config and not split:
config, split = await get_first_config_and_split_name(hub_id)
if not config:
config, _ = await get_first_config_and_split_name(hub_id)
if not split:
_, split = await get_first_config_and_split_name(hub_id)
info = await get_dataset_info(hub_id, config)
if info is None:
logger.error(f"Dataset {hub_id} is not accessible via the datasets server.")
return None
if dataset_info := info.get("dataset_info"):
total_rows_for_split = dataset_info.get("splits").get(split).get("num_examples")
features = dataset_info.get("features")
column_names = set(features.keys())
logger.info(f"Column names: {column_names}")
if not set(column_names).intersection(TARGET_COLUMN_NAMES):
logger.error(
f"Dataset {hub_id} {column_names} is not in any of the target columns {TARGET_COLUMN_NAMES}"
)
return None
for column in TARGET_COLUMN_NAMES:
if column in column_names:
target_column = column
logger.info(f"Using column {target_column} for language detection")
break
random_rows = await get_random_rows(
hub_id,
total_rows_for_split,
number_of_rows,
max_request_calls,
config,
split,
)
logger.info(f"Predicting language for {len(random_rows)} rows")
predictions = predict_rows(random_rows, target_column)
predictions["hub_id"] = hub_id
predictions["config"] = config
predictions["split"] = split
return predictions