dattarij's picture
adding ContraCLIP folder
8c212a5
raw
history blame
2.5 kB
import torch
import torch.nn.functional as F
import os
import sys
import cv2
import random
import datetime
import math
import argparse
import numpy as np
import scipy.io as sio
import zipfile
from .net_s3fd import s3fd
from .bbox import *
import matplotlib.pyplot as plt
def detect(net, img, device):
img = img - np.array([104, 117, 123])
img = img.transpose(2, 0, 1)
img = img.reshape((1,) + img.shape)
# if torch.cuda.current_device() == 0:
# torch.backends.cudnn.benchmark = True
img = torch.from_numpy(img).float().to(device)
return batch_detect(net, img, device)
def batch_detect(net, img_batch, device):
"""
Inputs:
- img_batch: a torch.Tensor of shape (Batch size, Channels, Height, Width)
"""
# if torch.cuda.current_device() == 0:
# torch.backends.cudnn.benchmark = True
BB, CC, HH, WW = img_batch.size()
with torch.no_grad():
olist = net(img_batch.float()) # patched uint8_t overflow error
for i in range(len(olist) // 2):
olist[i * 2] = F.softmax(olist[i * 2], dim=1)
bboxlists = []
olist = [oelem.data.cpu() for oelem in olist]
for j in range(BB):
bboxlist = []
for i in range(len(olist) // 2):
ocls, oreg = olist[i * 2], olist[i * 2 + 1]
FB, FC, FH, FW = ocls.size() # feature map size
stride = 2**(i + 2) # 4,8,16,32,64,128
anchor = stride * 4
poss = zip(*np.where(ocls[:, 1, :, :] > 0.05))
for Iindex, hindex, windex in poss:
axc, ayc = stride / 2 + windex * stride, stride / 2 + hindex * stride
score = ocls[j, 1, hindex, windex]
loc = oreg[j, :, hindex, windex].contiguous().view(1, 4)
priors = torch.Tensor([[axc / 1.0, ayc / 1.0, stride * 4 / 1.0, stride * 4 / 1.0]])
variances = [0.1, 0.2]
box = decode(loc, priors, variances)
x1, y1, x2, y2 = box[0] * 1.0
bboxlist.append([x1, y1, x2, y2, score])
bboxlists.append(bboxlist)
bboxlists = np.array(bboxlists)
if 0 == len(bboxlists):
bboxlists = np.zeros((1, 1, 5))
return bboxlists
def flip_detect(net, img, device):
img = cv2.flip(img, 1)
b = detect(net, img, device)
bboxlist = np.zeros(b.shape)
bboxlist[:, 0] = img.shape[1] - b[:, 2]
bboxlist[:, 1] = b[:, 1]
bboxlist[:, 2] = img.shape[1] - b[:, 0]
bboxlist[:, 3] = b[:, 3]
bboxlist[:, 4] = b[:, 4]
return bboxlist
def pts_to_bb(pts):
min_x, min_y = np.min(pts, axis=0)
max_x, max_y = np.max(pts, axis=0)
return np.array([min_x, min_y, max_x, max_y])