Spaces:
Runtime error
Runtime error
import gradio as gr | |
import nltk | |
import librosa | |
from transformers import pipeline, TranslationPipeline, AutoTokenizer, TranslationPipeline | |
from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC, Wav2Vec2Tokenizer | |
from transformers.file_utils import cached_path, hf_bucket_url | |
import os, zipfile | |
from datasets import load_dataset | |
import torch | |
import kenlm | |
import torchaudio | |
from pyctcdecode import Alphabet, BeamSearchDecoderCTC, LanguageModel | |
"""Vietnamese speech2text""" | |
cache_dir = './cache/' | |
processor = Wav2Vec2Processor.from_pretrained("nguyenvulebinh/wav2vec2-base-vietnamese-250h", cache_dir=cache_dir) | |
vi_model = Wav2Vec2ForCTC.from_pretrained("nguyenvulebinh/wav2vec2-base-vietnamese-250h", cache_dir=cache_dir) | |
lm_file = hf_bucket_url("nguyenvulebinh/wav2vec2-base-vietnamese-250h", filename='vi_lm_4grams.bin.zip') | |
lm_file = cached_path(lm_file,cache_dir=cache_dir) | |
with zipfile.ZipFile(lm_file, 'r') as zip_ref: | |
zip_ref.extractall(cache_dir) | |
lm_file = cache_dir + 'vi_lm_4grams.bin' | |
def get_decoder_ngram_model(tokenizer, ngram_lm_path): | |
vocab_dict = tokenizer.get_vocab() | |
sort_vocab = sorted((value, key) for (key, value) in vocab_dict.items()) | |
vocab = [x[1] for x in sort_vocab][:-2] | |
vocab_list = vocab | |
# convert ctc blank character representation | |
vocab_list[tokenizer.pad_token_id] = "" | |
# replace special characters | |
vocab_list[tokenizer.unk_token_id] = "" | |
# vocab_list[tokenizer.bos_token_id] = "" | |
# vocab_list[tokenizer.eos_token_id] = "" | |
# convert space character representation | |
vocab_list[tokenizer.word_delimiter_token_id] = " " | |
# specify ctc blank char index, since conventially it is the last entry of the logit matrix | |
alphabet = Alphabet.build_alphabet(vocab_list, ctc_token_idx=tokenizer.pad_token_id) | |
lm_model = kenlm.Model(ngram_lm_path) | |
decoder = BeamSearchDecoderCTC(alphabet, | |
language_model=LanguageModel(lm_model)) | |
return decoder | |
ngram_lm_model = get_decoder_ngram_model(processor.tokenizer, lm_file) | |
# define function to read in sound file | |
def speech_file_to_array_fn(path, max_seconds=10): | |
batch = {"file": path} | |
speech_array, sampling_rate = torchaudio.load(batch["file"]) | |
if sampling_rate != 16000: | |
transform = torchaudio.transforms.Resample(orig_freq=sampling_rate, | |
new_freq=16000) | |
speech_array = transform(speech_array) | |
speech_array = speech_array[0] | |
if max_seconds > 0: | |
speech_array = speech_array[:max_seconds*16000] | |
batch["speech"] = speech_array.numpy() | |
batch["sampling_rate"] = 16000 | |
return batch | |
# tokenize | |
def speech2text_vi(audio): | |
# read in sound file | |
# load dummy dataset and read soundfiles | |
ds = speech_file_to_array_fn(audio.name) | |
# infer model | |
input_values = processor( | |
ds["speech"], | |
sampling_rate=ds["sampling_rate"], | |
return_tensors="pt" | |
).input_values | |
# decode ctc output | |
logits = vi_model(input_values).logits[0] | |
pred_ids = torch.argmax(logits, dim=-1) | |
greedy_search_output = processor.decode(pred_ids) | |
beam_search_output = ngram_lm_model.decode(logits.cpu().detach().numpy(), beam_width=500) | |
return beam_search_output | |
"""Machine translation""" | |
vien_model_checkpoint = "datnth1709/finetuned_HelsinkiNLP-opus-mt-vi-en_PhoMT" | |
vien_translator = pipeline("translation", model=vien_model_checkpoint) | |
def translate_vi2en(Vietnamese): | |
return vien_translator(Vietnamese)[0]['translation_text'] | |
""" Inference""" | |
def inference_vien(audio): | |
vi_text = speech2text_vi(audio) | |
en_text = translate_vi2en(vi_text) | |
return vi_text, en_text | |
def transcribe_vi_1(audio, state_en=""): | |
ds = speech_file_to_array_fn(audio.name) | |
# infer model | |
input_values = processor( | |
ds["speech"], | |
sampling_rate=ds["sampling_rate"], | |
return_tensors="pt" | |
).input_values | |
# decode ctc output | |
logits = vi_model(input_values).logits[0] | |
pred_ids = torch.argmax(logits, dim=-1) | |
greedy_search_output = processor.decode(pred_ids) | |
beam_search_output = ngram_lm_model.decode(logits.cpu().detach().numpy(), beam_width=500) | |
en_text = translate_vi2en(beam_search_output) | |
state_en += en_text + " " | |
return state_en, state_en | |
"""Gradio demo""" | |
vi_example_text = ["Có phải bạn đang muốn tìm mua nhà ở ngoại ô thành phố Hồ Chí Minh không?", | |
"Ánh mắt ta chạm nhau. Chỉ muốn ngắm anh lâu thật lâu.", | |
"Nếu như một câu nói có thể khiến em vui."] | |
vi_example_voice =[['vi_speech_01.wav'], ['vi_speech_02.wav'], ['vi_speech_03.wav']] | |
with gr.TabItem("Vi-En Realtime Translation"): | |
gr.Interface( | |
fn=transcribe_vi_1, | |
inputs=[ | |
gr.Audio(source="microphone", label="Input Vietnamese Audio", type="file", streaming=True), | |
"state", | |
], | |
outputs= [ | |
"text", | |
"state", | |
], | |
examples=vi_example_voice, | |
live=True).launch() | |