Spaces:
Sleeping
Sleeping
from keras.models import load_model | |
import keras.utils as image | |
import numpy as np | |
import cv2 | |
import tempfile | |
import streamlit as st | |
from PIL import Image | |
# Load the saved model | |
# Load and preprocess an image for prediction | |
# img_path = r'D:\PycharmProjects\hocmay\Dog_Cat_CNN2\anh-cho-cuoi.jpg' # Replace with the path to your image | |
# Normalize the image | |
# Perform prediction | |
# Get the index of the predicted class | |
model_file="model4.h5" | |
img_file=st.file_uploader("Tải lên ảnh lớp",type=["png","jpg","jpeg"]) | |
temp_file2 = tempfile.NamedTemporaryFile(suffix=".pkl", delete=False) | |
if img_file is not None: | |
temp_file2.write(img_file.read()) | |
#Loaded model | |
loaded_model = load_model(model_file) | |
button2 = st.button("Xử lí", key="btn2") | |
if button2: | |
img = image.load_img(temp_file2.name, target_size=(128, 128)) | |
img_array = image.img_to_array(img) | |
img_array = np.expand_dims(img_array, axis=0) | |
img_array /= 255.0 | |
prediction = loaded_model.predict(img_array) | |
class_index = np.argmax(prediction) | |
if class_index == 0: | |
img_cv2 = cv2.imread(temp_file2.name) | |
img_cv2 = cv2.putText(img_cv2, 'Cat', (00, 70), cv2.FONT_HERSHEY_SIMPLEX, | |
3, (0, 0, 255), thickness=5) | |
st.image(img_cv2, caption='Ảnh mèo',channels="BGR") | |
st.markdown("Đây là ảnh mèo") | |
else: | |
img_cv2 = cv2.imread(temp_file2.name) | |
img_cv2 = cv2.putText(img_cv2, 'Dog', (00, 70), cv2.FONT_HERSHEY_SIMPLEX, | |
3, (0, 0, 255), thickness=5) | |
st.image(img_cv2, caption='Ảnh chó',channels="BGR") | |
st.markdown("Đây là ảnh chó") | |