datnguyentien204's picture
Upload 338 files
8e0b903 verified
raw
history blame
6.3 kB
import math
import os
from dataclasses import dataclass, field
from typing import List, Union
import numpy as np
import PIL.Image
import torch
import torch.nn.functional as F
import trimesh
from einops import rearrange
from huggingface_hub import hf_hub_download
from omegaconf import OmegaConf
from PIL import Image
import sys
script_dir = os.path.dirname(os.path.abspath(__file__))
imgto3d_path = os.path.join(script_dir, '.')
print(imgto3d_path)
sys.path.append(imgto3d_path)
from .models.isosurface import MarchingCubeHelper
from tsr_utils import (
BaseModule,
ImagePreprocessor,
find_class,
get_spherical_cameras,
scale_tensor,
)
class TSR(BaseModule):
@dataclass
class Config(BaseModule.Config):
cond_image_size: int
image_tokenizer_cls: str
image_tokenizer: dict
tokenizer_cls: str
tokenizer: dict
backbone_cls: str
backbone: dict
post_processor_cls: str
post_processor: dict
decoder_cls: str
decoder: dict
renderer_cls: str
renderer: dict
cfg: Config
@classmethod
def from_pretrained(
cls, config_path: str, weight_path: str
):
cfg = OmegaConf.load(config_path)
OmegaConf.resolve(cfg)
model = cls(cfg)
ckpt = torch.load(weight_path, map_location="cpu")
model.load_state_dict(ckpt)
return model
def configure(self):
self.image_tokenizer = find_class(self.cfg.image_tokenizer_cls)(
self.cfg.image_tokenizer
)
self.tokenizer = find_class(self.cfg.tokenizer_cls)(self.cfg.tokenizer)
self.backbone = find_class(self.cfg.backbone_cls)(self.cfg.backbone)
self.post_processor = find_class(self.cfg.post_processor_cls)(
self.cfg.post_processor
)
self.decoder = find_class(self.cfg.decoder_cls)(self.cfg.decoder)
self.renderer = find_class(self.cfg.renderer_cls)(self.cfg.renderer)
self.image_processor = ImagePreprocessor()
self.isosurface_helper = None
def forward(
self,
image: Union[
PIL.Image.Image,
np.ndarray,
torch.FloatTensor,
List[PIL.Image.Image],
List[np.ndarray],
List[torch.FloatTensor],
],
device: str,
) -> torch.FloatTensor:
rgb_cond = self.image_processor(image, self.cfg.cond_image_size)[:, None].to(
device
)
batch_size = rgb_cond.shape[0]
input_image_tokens: torch.Tensor = self.image_tokenizer(
rearrange(rgb_cond, "B Nv H W C -> B Nv C H W", Nv=1),
)
input_image_tokens = rearrange(
input_image_tokens, "B Nv C Nt -> B (Nv Nt) C", Nv=1
)
tokens: torch.Tensor = self.tokenizer(batch_size)
tokens = self.backbone(
tokens,
encoder_hidden_states=input_image_tokens,
)
scene_codes = self.post_processor(self.tokenizer.detokenize(tokens))
return scene_codes
def render(
self,
scene_codes,
n_views: int,
elevation_deg: float = 0.0,
camera_distance: float = 1.9,
fovy_deg: float = 40.0,
height: int = 256,
width: int = 256,
return_type: str = "pil",
):
rays_o, rays_d = get_spherical_cameras(
n_views, elevation_deg, camera_distance, fovy_deg, height, width
)
rays_o, rays_d = rays_o.to(scene_codes.device), rays_d.to(scene_codes.device)
def process_output(image: torch.FloatTensor):
if return_type == "pt":
return image
elif return_type == "np":
return image.detach().cpu().numpy()
elif return_type == "pil":
return Image.fromarray(
(image.detach().cpu().numpy() * 255.0).astype(np.uint8)
)
else:
raise NotImplementedError
images = []
for scene_code in scene_codes:
images_ = []
for i in range(n_views):
with torch.no_grad():
image = self.renderer(
self.decoder, scene_code, rays_o[i], rays_d[i]
)
images_.append(process_output(image))
images.append(images_)
return images
def set_marching_cubes_resolution(self, resolution: int):
if (
self.isosurface_helper is not None
and self.isosurface_helper.resolution == resolution
):
return
self.isosurface_helper = MarchingCubeHelper(resolution)
def extract_mesh(self, scene_codes, resolution: int = 256, threshold: float = 25.0):
self.set_marching_cubes_resolution(resolution)
meshes = []
for scene_code in scene_codes:
with torch.no_grad():
density = self.renderer.query_triplane(
self.decoder,
scale_tensor(
self.isosurface_helper.grid_vertices.to(scene_codes.device),
self.isosurface_helper.points_range,
(-self.renderer.cfg.radius, self.renderer.cfg.radius),
),
scene_code,
)["density_act"]
v_pos, t_pos_idx = self.isosurface_helper(-(density - threshold))
v_pos = scale_tensor(
v_pos,
self.isosurface_helper.points_range,
(-self.renderer.cfg.radius, self.renderer.cfg.radius),
)
with torch.no_grad():
color = self.renderer.query_triplane(
self.decoder,
v_pos,
scene_code,
)["color"]
mesh = trimesh.Trimesh(
vertices=v_pos.cpu().numpy(),
faces=t_pos_idx.cpu().numpy(),
vertex_colors=color.cpu().numpy(),
)
meshes.append(mesh)
return meshes