Spaces:
Runtime error
Runtime error
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from __future__ import absolute_import | |
from __future__ import division | |
from __future__ import print_function | |
import math | |
import paddle | |
from paddle import ParamAttr, nn | |
from paddle import nn, ParamAttr | |
from paddle.nn import functional as F | |
import numpy as np | |
gradient_clip = 10 | |
class WrapEncoderForFeature(nn.Layer): | |
def __init__(self, | |
src_vocab_size, | |
max_length, | |
n_layer, | |
n_head, | |
d_key, | |
d_value, | |
d_model, | |
d_inner_hid, | |
prepostprocess_dropout, | |
attention_dropout, | |
relu_dropout, | |
preprocess_cmd, | |
postprocess_cmd, | |
weight_sharing, | |
bos_idx=0): | |
super(WrapEncoderForFeature, self).__init__() | |
self.prepare_encoder = PrepareEncoder( | |
src_vocab_size, | |
d_model, | |
max_length, | |
prepostprocess_dropout, | |
bos_idx=bos_idx, | |
word_emb_param_name="src_word_emb_table") | |
self.encoder = Encoder(n_layer, n_head, d_key, d_value, d_model, | |
d_inner_hid, prepostprocess_dropout, | |
attention_dropout, relu_dropout, preprocess_cmd, | |
postprocess_cmd) | |
def forward(self, enc_inputs): | |
conv_features, src_pos, src_slf_attn_bias = enc_inputs | |
enc_input = self.prepare_encoder(conv_features, src_pos) | |
enc_output = self.encoder(enc_input, src_slf_attn_bias) | |
return enc_output | |
class WrapEncoder(nn.Layer): | |
""" | |
embedder + encoder | |
""" | |
def __init__(self, | |
src_vocab_size, | |
max_length, | |
n_layer, | |
n_head, | |
d_key, | |
d_value, | |
d_model, | |
d_inner_hid, | |
prepostprocess_dropout, | |
attention_dropout, | |
relu_dropout, | |
preprocess_cmd, | |
postprocess_cmd, | |
weight_sharing, | |
bos_idx=0): | |
super(WrapEncoder, self).__init__() | |
self.prepare_decoder = PrepareDecoder( | |
src_vocab_size, | |
d_model, | |
max_length, | |
prepostprocess_dropout, | |
bos_idx=bos_idx) | |
self.encoder = Encoder(n_layer, n_head, d_key, d_value, d_model, | |
d_inner_hid, prepostprocess_dropout, | |
attention_dropout, relu_dropout, preprocess_cmd, | |
postprocess_cmd) | |
def forward(self, enc_inputs): | |
src_word, src_pos, src_slf_attn_bias = enc_inputs | |
enc_input = self.prepare_decoder(src_word, src_pos) | |
enc_output = self.encoder(enc_input, src_slf_attn_bias) | |
return enc_output | |
class Encoder(nn.Layer): | |
""" | |
encoder | |
""" | |
def __init__(self, | |
n_layer, | |
n_head, | |
d_key, | |
d_value, | |
d_model, | |
d_inner_hid, | |
prepostprocess_dropout, | |
attention_dropout, | |
relu_dropout, | |
preprocess_cmd="n", | |
postprocess_cmd="da"): | |
super(Encoder, self).__init__() | |
self.encoder_layers = list() | |
for i in range(n_layer): | |
self.encoder_layers.append( | |
self.add_sublayer( | |
"layer_%d" % i, | |
EncoderLayer(n_head, d_key, d_value, d_model, d_inner_hid, | |
prepostprocess_dropout, attention_dropout, | |
relu_dropout, preprocess_cmd, | |
postprocess_cmd))) | |
self.processer = PrePostProcessLayer(preprocess_cmd, d_model, | |
prepostprocess_dropout) | |
def forward(self, enc_input, attn_bias): | |
for encoder_layer in self.encoder_layers: | |
enc_output = encoder_layer(enc_input, attn_bias) | |
enc_input = enc_output | |
enc_output = self.processer(enc_output) | |
return enc_output | |
class EncoderLayer(nn.Layer): | |
""" | |
EncoderLayer | |
""" | |
def __init__(self, | |
n_head, | |
d_key, | |
d_value, | |
d_model, | |
d_inner_hid, | |
prepostprocess_dropout, | |
attention_dropout, | |
relu_dropout, | |
preprocess_cmd="n", | |
postprocess_cmd="da"): | |
super(EncoderLayer, self).__init__() | |
self.preprocesser1 = PrePostProcessLayer(preprocess_cmd, d_model, | |
prepostprocess_dropout) | |
self.self_attn = MultiHeadAttention(d_key, d_value, d_model, n_head, | |
attention_dropout) | |
self.postprocesser1 = PrePostProcessLayer(postprocess_cmd, d_model, | |
prepostprocess_dropout) | |
self.preprocesser2 = PrePostProcessLayer(preprocess_cmd, d_model, | |
prepostprocess_dropout) | |
self.ffn = FFN(d_inner_hid, d_model, relu_dropout) | |
self.postprocesser2 = PrePostProcessLayer(postprocess_cmd, d_model, | |
prepostprocess_dropout) | |
def forward(self, enc_input, attn_bias): | |
attn_output = self.self_attn( | |
self.preprocesser1(enc_input), None, None, attn_bias) | |
attn_output = self.postprocesser1(attn_output, enc_input) | |
ffn_output = self.ffn(self.preprocesser2(attn_output)) | |
ffn_output = self.postprocesser2(ffn_output, attn_output) | |
return ffn_output | |
class MultiHeadAttention(nn.Layer): | |
""" | |
Multi-Head Attention | |
""" | |
def __init__(self, d_key, d_value, d_model, n_head=1, dropout_rate=0.): | |
super(MultiHeadAttention, self).__init__() | |
self.n_head = n_head | |
self.d_key = d_key | |
self.d_value = d_value | |
self.d_model = d_model | |
self.dropout_rate = dropout_rate | |
self.q_fc = paddle.nn.Linear( | |
in_features=d_model, out_features=d_key * n_head, bias_attr=False) | |
self.k_fc = paddle.nn.Linear( | |
in_features=d_model, out_features=d_key * n_head, bias_attr=False) | |
self.v_fc = paddle.nn.Linear( | |
in_features=d_model, out_features=d_value * n_head, bias_attr=False) | |
self.proj_fc = paddle.nn.Linear( | |
in_features=d_value * n_head, out_features=d_model, bias_attr=False) | |
def _prepare_qkv(self, queries, keys, values, cache=None): | |
if keys is None: # self-attention | |
keys, values = queries, queries | |
static_kv = False | |
else: # cross-attention | |
static_kv = True | |
q = self.q_fc(queries) | |
q = paddle.reshape(x=q, shape=[0, 0, self.n_head, self.d_key]) | |
q = paddle.transpose(x=q, perm=[0, 2, 1, 3]) | |
if cache is not None and static_kv and "static_k" in cache: | |
# for encoder-decoder attention in inference and has cached | |
k = cache["static_k"] | |
v = cache["static_v"] | |
else: | |
k = self.k_fc(keys) | |
v = self.v_fc(values) | |
k = paddle.reshape(x=k, shape=[0, 0, self.n_head, self.d_key]) | |
k = paddle.transpose(x=k, perm=[0, 2, 1, 3]) | |
v = paddle.reshape(x=v, shape=[0, 0, self.n_head, self.d_value]) | |
v = paddle.transpose(x=v, perm=[0, 2, 1, 3]) | |
if cache is not None: | |
if static_kv and not "static_k" in cache: | |
# for encoder-decoder attention in inference and has not cached | |
cache["static_k"], cache["static_v"] = k, v | |
elif not static_kv: | |
# for decoder self-attention in inference | |
cache_k, cache_v = cache["k"], cache["v"] | |
k = paddle.concat([cache_k, k], axis=2) | |
v = paddle.concat([cache_v, v], axis=2) | |
cache["k"], cache["v"] = k, v | |
return q, k, v | |
def forward(self, queries, keys, values, attn_bias, cache=None): | |
# compute q ,k ,v | |
keys = queries if keys is None else keys | |
values = keys if values is None else values | |
q, k, v = self._prepare_qkv(queries, keys, values, cache) | |
# scale dot product attention | |
product = paddle.matmul(x=q, y=k, transpose_y=True) | |
product = product * self.d_model**-0.5 | |
if attn_bias is not None: | |
product += attn_bias | |
weights = F.softmax(product) | |
if self.dropout_rate: | |
weights = F.dropout( | |
weights, p=self.dropout_rate, mode="downscale_in_infer") | |
out = paddle.matmul(weights, v) | |
# combine heads | |
out = paddle.transpose(out, perm=[0, 2, 1, 3]) | |
out = paddle.reshape(x=out, shape=[0, 0, out.shape[2] * out.shape[3]]) | |
# project to output | |
out = self.proj_fc(out) | |
return out | |
class PrePostProcessLayer(nn.Layer): | |
""" | |
PrePostProcessLayer | |
""" | |
def __init__(self, process_cmd, d_model, dropout_rate): | |
super(PrePostProcessLayer, self).__init__() | |
self.process_cmd = process_cmd | |
self.functors = [] | |
for cmd in self.process_cmd: | |
if cmd == "a": # add residual connection | |
self.functors.append(lambda x, y: x + y if y is not None else x) | |
elif cmd == "n": # add layer normalization | |
self.functors.append( | |
self.add_sublayer( | |
"layer_norm_%d" % len(self.sublayers()), | |
paddle.nn.LayerNorm( | |
normalized_shape=d_model, | |
weight_attr=paddle.ParamAttr( | |
initializer=paddle.nn.initializer.Constant(1.)), | |
bias_attr=paddle.ParamAttr( | |
initializer=paddle.nn.initializer.Constant(0.))))) | |
elif cmd == "d": # add dropout | |
self.functors.append(lambda x: F.dropout( | |
x, p=dropout_rate, mode="downscale_in_infer") | |
if dropout_rate else x) | |
def forward(self, x, residual=None): | |
for i, cmd in enumerate(self.process_cmd): | |
if cmd == "a": | |
x = self.functors[i](x, residual) | |
else: | |
x = self.functors[i](x) | |
return x | |
class PrepareEncoder(nn.Layer): | |
def __init__(self, | |
src_vocab_size, | |
src_emb_dim, | |
src_max_len, | |
dropout_rate=0, | |
bos_idx=0, | |
word_emb_param_name=None, | |
pos_enc_param_name=None): | |
super(PrepareEncoder, self).__init__() | |
self.src_emb_dim = src_emb_dim | |
self.src_max_len = src_max_len | |
self.emb = paddle.nn.Embedding( | |
num_embeddings=self.src_max_len, embedding_dim=self.src_emb_dim) | |
self.dropout_rate = dropout_rate | |
def forward(self, src_word, src_pos): | |
src_word_emb = src_word | |
src_word_emb = paddle.cast(src_word_emb, 'float32') | |
src_word_emb = paddle.scale(x=src_word_emb, scale=self.src_emb_dim**0.5) | |
src_pos = paddle.squeeze(src_pos, axis=-1) | |
src_pos_enc = self.emb(src_pos) | |
src_pos_enc.stop_gradient = True | |
enc_input = src_word_emb + src_pos_enc | |
if self.dropout_rate: | |
out = F.dropout( | |
x=enc_input, p=self.dropout_rate, mode="downscale_in_infer") | |
else: | |
out = enc_input | |
return out | |
class PrepareDecoder(nn.Layer): | |
def __init__(self, | |
src_vocab_size, | |
src_emb_dim, | |
src_max_len, | |
dropout_rate=0, | |
bos_idx=0, | |
word_emb_param_name=None, | |
pos_enc_param_name=None): | |
super(PrepareDecoder, self).__init__() | |
self.src_emb_dim = src_emb_dim | |
""" | |
self.emb0 = Embedding(num_embeddings=src_vocab_size, | |
embedding_dim=src_emb_dim) | |
""" | |
self.emb0 = paddle.nn.Embedding( | |
num_embeddings=src_vocab_size, | |
embedding_dim=self.src_emb_dim, | |
padding_idx=bos_idx, | |
weight_attr=paddle.ParamAttr( | |
name=word_emb_param_name, | |
initializer=nn.initializer.Normal(0., src_emb_dim**-0.5))) | |
self.emb1 = paddle.nn.Embedding( | |
num_embeddings=src_max_len, | |
embedding_dim=self.src_emb_dim, | |
weight_attr=paddle.ParamAttr(name=pos_enc_param_name)) | |
self.dropout_rate = dropout_rate | |
def forward(self, src_word, src_pos): | |
src_word = paddle.cast(src_word, 'int64') | |
src_word = paddle.squeeze(src_word, axis=-1) | |
src_word_emb = self.emb0(src_word) | |
src_word_emb = paddle.scale(x=src_word_emb, scale=self.src_emb_dim**0.5) | |
src_pos = paddle.squeeze(src_pos, axis=-1) | |
src_pos_enc = self.emb1(src_pos) | |
src_pos_enc.stop_gradient = True | |
enc_input = src_word_emb + src_pos_enc | |
if self.dropout_rate: | |
out = F.dropout( | |
x=enc_input, p=self.dropout_rate, mode="downscale_in_infer") | |
else: | |
out = enc_input | |
return out | |
class FFN(nn.Layer): | |
""" | |
Feed-Forward Network | |
""" | |
def __init__(self, d_inner_hid, d_model, dropout_rate): | |
super(FFN, self).__init__() | |
self.dropout_rate = dropout_rate | |
self.fc1 = paddle.nn.Linear( | |
in_features=d_model, out_features=d_inner_hid) | |
self.fc2 = paddle.nn.Linear( | |
in_features=d_inner_hid, out_features=d_model) | |
def forward(self, x): | |
hidden = self.fc1(x) | |
hidden = F.relu(hidden) | |
if self.dropout_rate: | |
hidden = F.dropout( | |
hidden, p=self.dropout_rate, mode="downscale_in_infer") | |
out = self.fc2(hidden) | |
return out | |