Spaces:
Runtime error
Runtime error
| # copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import numpy as np | |
| import cv2 | |
| import math | |
| import os | |
| import json | |
| import random | |
| import traceback | |
| from paddle.io import Dataset | |
| from .imaug import transform, create_operators | |
| class SimpleDataSet(Dataset): | |
| def __init__(self, config, mode, logger, seed=None): | |
| super(SimpleDataSet, self).__init__() | |
| self.logger = logger | |
| self.mode = mode.lower() | |
| global_config = config['Global'] | |
| dataset_config = config[mode]['dataset'] | |
| loader_config = config[mode]['loader'] | |
| self.delimiter = dataset_config.get('delimiter', '\t') | |
| label_file_list = dataset_config.pop('label_file_list') | |
| data_source_num = len(label_file_list) | |
| ratio_list = dataset_config.get("ratio_list", 1.0) | |
| if isinstance(ratio_list, (float, int)): | |
| ratio_list = [float(ratio_list)] * int(data_source_num) | |
| assert len( | |
| ratio_list | |
| ) == data_source_num, "The length of ratio_list should be the same as the file_list." | |
| self.data_dir = dataset_config['data_dir'] | |
| self.do_shuffle = loader_config['shuffle'] | |
| self.seed = seed | |
| logger.info("Initialize indexs of datasets:%s" % label_file_list) | |
| self.data_lines = self.get_image_info_list(label_file_list, ratio_list) | |
| self.data_idx_order_list = list(range(len(self.data_lines))) | |
| if self.mode == "train" and self.do_shuffle: | |
| self.shuffle_data_random() | |
| self.set_epoch_as_seed(self.seed, dataset_config) | |
| self.ops = create_operators(dataset_config['transforms'], global_config) | |
| self.ext_op_transform_idx = dataset_config.get("ext_op_transform_idx", | |
| 2) | |
| self.need_reset = True in [x < 1 for x in ratio_list] | |
| def set_epoch_as_seed(self, seed, dataset_config): | |
| if self.mode == 'train': | |
| try: | |
| border_map_id = [index | |
| for index, dictionary in enumerate(dataset_config['transforms']) | |
| if 'MakeBorderMap' in dictionary][0] | |
| shrink_map_id = [index | |
| for index, dictionary in enumerate(dataset_config['transforms']) | |
| if 'MakeShrinkMap' in dictionary][0] | |
| dataset_config['transforms'][border_map_id]['MakeBorderMap'][ | |
| 'epoch'] = seed if seed is not None else 0 | |
| dataset_config['transforms'][shrink_map_id]['MakeShrinkMap'][ | |
| 'epoch'] = seed if seed is not None else 0 | |
| except Exception as E: | |
| print(E) | |
| return | |
| def get_image_info_list(self, file_list, ratio_list): | |
| if isinstance(file_list, str): | |
| file_list = [file_list] | |
| data_lines = [] | |
| for idx, file in enumerate(file_list): | |
| with open(file, "rb") as f: | |
| lines = f.readlines() | |
| if self.mode == "train" or ratio_list[idx] < 1.0: | |
| random.seed(self.seed) | |
| lines = random.sample(lines, | |
| round(len(lines) * ratio_list[idx])) | |
| data_lines.extend(lines) | |
| return data_lines | |
| def shuffle_data_random(self): | |
| random.seed(self.seed) | |
| random.shuffle(self.data_lines) | |
| return | |
| def _try_parse_filename_list(self, file_name): | |
| # multiple images -> one gt label | |
| if len(file_name) > 0 and file_name[0] == "[": | |
| try: | |
| info = json.loads(file_name) | |
| file_name = random.choice(info) | |
| except: | |
| pass | |
| return file_name | |
| def get_ext_data(self): | |
| ext_data_num = 0 | |
| for op in self.ops: | |
| if hasattr(op, 'ext_data_num'): | |
| ext_data_num = getattr(op, 'ext_data_num') | |
| break | |
| load_data_ops = self.ops[:self.ext_op_transform_idx] | |
| ext_data = [] | |
| while len(ext_data) < ext_data_num: | |
| file_idx = self.data_idx_order_list[np.random.randint(self.__len__( | |
| ))] | |
| data_line = self.data_lines[file_idx] | |
| data_line = data_line.decode('utf-8') | |
| substr = data_line.strip("\n").split(self.delimiter) | |
| file_name = substr[0] | |
| file_name = self._try_parse_filename_list(file_name) | |
| label = substr[1] | |
| img_path = os.path.join(self.data_dir, file_name) | |
| data = {'img_path': img_path, 'label': label} | |
| if not os.path.exists(img_path): | |
| continue | |
| with open(data['img_path'], 'rb') as f: | |
| img = f.read() | |
| data['image'] = img | |
| data = transform(data, load_data_ops) | |
| if data is None: | |
| continue | |
| if 'polys' in data.keys(): | |
| if data['polys'].shape[1] != 4: | |
| continue | |
| ext_data.append(data) | |
| return ext_data | |
| def __getitem__(self, idx): | |
| file_idx = self.data_idx_order_list[idx] | |
| data_line = self.data_lines[file_idx] | |
| try: | |
| data_line = data_line.decode('utf-8') | |
| substr = data_line.strip("\n").split(self.delimiter) | |
| file_name = substr[0] | |
| file_name = self._try_parse_filename_list(file_name) | |
| label = substr[1] | |
| img_path = os.path.join(self.data_dir, file_name) | |
| data = {'img_path': img_path, 'label': label} | |
| if not os.path.exists(img_path): | |
| raise Exception("{} does not exist!".format(img_path)) | |
| with open(data['img_path'], 'rb') as f: | |
| img = f.read() | |
| data['image'] = img | |
| data['ext_data'] = self.get_ext_data() | |
| outs = transform(data, self.ops) | |
| except: | |
| self.logger.error( | |
| "When parsing line {}, error happened with msg: {}".format( | |
| data_line, traceback.format_exc())) | |
| outs = None | |
| if outs is None: | |
| # during evaluation, we should fix the idx to get same results for many times of evaluation. | |
| rnd_idx = np.random.randint(self.__len__( | |
| )) if self.mode == "train" else (idx + 1) % self.__len__() | |
| return self.__getitem__(rnd_idx) | |
| return outs | |
| def __len__(self): | |
| return len(self.data_idx_order_list) | |
| class MultiScaleDataSet(SimpleDataSet): | |
| def __init__(self, config, mode, logger, seed=None): | |
| super(MultiScaleDataSet, self).__init__(config, mode, logger, seed) | |
| self.ds_width = config[mode]['dataset'].get('ds_width', False) | |
| if self.ds_width: | |
| self.wh_aware() | |
| def wh_aware(self): | |
| data_line_new = [] | |
| wh_ratio = [] | |
| for lins in self.data_lines: | |
| data_line_new.append(lins) | |
| lins = lins.decode('utf-8') | |
| name, label, w, h = lins.strip("\n").split(self.delimiter) | |
| wh_ratio.append(float(w) / float(h)) | |
| self.data_lines = data_line_new | |
| self.wh_ratio = np.array(wh_ratio) | |
| self.wh_ratio_sort = np.argsort(self.wh_ratio) | |
| self.data_idx_order_list = list(range(len(self.data_lines))) | |
| def resize_norm_img(self, data, imgW, imgH, padding=True): | |
| img = data['image'] | |
| h = img.shape[0] | |
| w = img.shape[1] | |
| if not padding: | |
| resized_image = cv2.resize( | |
| img, (imgW, imgH), interpolation=cv2.INTER_LINEAR) | |
| resized_w = imgW | |
| else: | |
| ratio = w / float(h) | |
| if math.ceil(imgH * ratio) > imgW: | |
| resized_w = imgW | |
| else: | |
| resized_w = int(math.ceil(imgH * ratio)) | |
| resized_image = cv2.resize(img, (resized_w, imgH)) | |
| resized_image = resized_image.astype('float32') | |
| resized_image = resized_image.transpose((2, 0, 1)) / 255 | |
| resized_image -= 0.5 | |
| resized_image /= 0.5 | |
| padding_im = np.zeros((3, imgH, imgW), dtype=np.float32) | |
| padding_im[:, :, :resized_w] = resized_image | |
| valid_ratio = min(1.0, float(resized_w / imgW)) | |
| data['image'] = padding_im | |
| data['valid_ratio'] = valid_ratio | |
| return data | |
| def __getitem__(self, properties): | |
| # properites is a tuple, contains (width, height, index) | |
| img_height = properties[1] | |
| idx = properties[2] | |
| if self.ds_width and properties[3] is not None: | |
| wh_ratio = properties[3] | |
| img_width = img_height * (1 if int(round(wh_ratio)) == 0 else | |
| int(round(wh_ratio))) | |
| file_idx = self.wh_ratio_sort[idx] | |
| else: | |
| file_idx = self.data_idx_order_list[idx] | |
| img_width = properties[0] | |
| wh_ratio = None | |
| data_line = self.data_lines[file_idx] | |
| try: | |
| data_line = data_line.decode('utf-8') | |
| substr = data_line.strip("\n").split(self.delimiter) | |
| file_name = substr[0] | |
| file_name = self._try_parse_filename_list(file_name) | |
| label = substr[1] | |
| img_path = os.path.join(self.data_dir, file_name) | |
| data = {'img_path': img_path, 'label': label} | |
| if not os.path.exists(img_path): | |
| raise Exception("{} does not exist!".format(img_path)) | |
| with open(data['img_path'], 'rb') as f: | |
| img = f.read() | |
| data['image'] = img | |
| data['ext_data'] = self.get_ext_data() | |
| outs = transform(data, self.ops[:-1]) | |
| if outs is not None: | |
| outs = self.resize_norm_img(outs, img_width, img_height) | |
| outs = transform(outs, self.ops[-1:]) | |
| except: | |
| self.logger.error( | |
| "When parsing line {}, error happened with msg: {}".format( | |
| data_line, traceback.format_exc())) | |
| outs = None | |
| if outs is None: | |
| # during evaluation, we should fix the idx to get same results for many times of evaluation. | |
| rnd_idx = (idx + 1) % self.__len__() | |
| return self.__getitem__([img_width, img_height, rnd_idx, wh_ratio]) | |
| return outs | |