Spaces:
Sleeping
Sleeping
| import os | |
| import streamlit as st | |
| from langchain import OpenAI | |
| from langchain.chains import ConversationChain | |
| from langchain.chains.conversation.memory import ConversationSummaryMemory | |
| from streamlit_chat import message | |
| from dotenv import load_dotenv | |
| load_dotenv() | |
| if "conversation" not in st.session_state: | |
| st.session_state["conversation"] = None | |
| if "messages" not in st.session_state: | |
| st.session_state["messages"] = [] | |
| # Setting page title and header | |
| st.set_page_config(page_title="Chat GPT Clone", page_icon=":robot_face:") | |
| st.markdown( | |
| "<h1 style='text-align: center;'>How can I assist you? </h1>", | |
| unsafe_allow_html=True, | |
| ) | |
| st.sidebar.title("π") | |
| summarise_button = st.sidebar.button("Summarise the conversation", key="summarise") | |
| if summarise_button: | |
| summarise_placeholder = st.sidebar.write( | |
| "Nice chatting with you my friend β€οΈ:\n\n" | |
| + st.session_state["conversation"].memory.buffer | |
| ) | |
| def getresponse(userInput: str): | |
| if st.session_state["conversation"] is None: | |
| llm = OpenAI( | |
| temperature=0, | |
| openai_api_key=os.getenv("OPENAI_API_KEY"), | |
| model_name="text-davinci-003", # we can also use 'gpt-3.5-turbo' | |
| ) | |
| st.session_state["conversation"] = ConversationChain( | |
| llm=llm, verbose=True, memory=ConversationSummaryMemory(llm=llm) | |
| ) | |
| response = st.session_state["conversation"].predict(input=userInput) | |
| print(st.session_state["conversation"].memory.buffer) | |
| return response | |
| response_container = st.container() | |
| container = st.container() | |
| with container: | |
| with st.form(key="my_form", clear_on_submit=True): | |
| user_input = st.text_area("Your question goes here:", key="input", height=100) | |
| submit_button = st.form_submit_button(label="Send") | |
| if submit_button: | |
| st.session_state["messages"].append(user_input) | |
| model_response = getresponse(user_input) | |
| st.session_state["messages"].append(model_response) | |
| with response_container: | |
| for i in range(len(st.session_state["messages"])): | |
| if (i % 2) == 0: | |
| message( | |
| st.session_state["messages"][i], | |
| is_user=True, | |
| key=str(i) + "_user", | |
| ) | |
| else: | |
| message(st.session_state["messages"][i], key=str(i) + "_AI") | |