Spaces:
Runtime error
Runtime error
### -------------------------------- ### | |
### libraries ### | |
### -------------------------------- ### | |
import gradio as gr | |
import numpy as np | |
import os | |
import tensorflow as tf | |
### -------------------------------- ### | |
### model loading ### | |
### -------------------------------- ### | |
model = tf.keras.models.load_model('model.h5') | |
## --------------------------------- ### | |
### reading: categories.txt ### | |
### -------------------------------- ### | |
labels = ['please upload categories.txt' for i in range(10)] # placeholder | |
if os.path.isfile("categories.txt"): | |
# open categories.txt in read mode | |
categories = open("categories.txt", "r") | |
labels = categories.readline().split() | |
## --------------------------------- ### | |
### page description ### | |
### -------------------------------- ### | |
title = "Seefood: Hot dog or... not hot dog" | |
description = "A Hugging Space demo created by datasith!" | |
article = \ | |
''' | |
#### Hot dog or not hot dog | |
Jìan-Yang's masterpiece from the show Silicon Valley serves as a great exercise to get | |
familiar with Hugging Face spaces! All the necessary files are included for everything | |
to run smoothly on HF's Spaces: | |
- app.py | |
- categories.txt | |
- model.h5 (AlexNet) | |
- requirements.txt | |
- README.md | |
- nay.jpg (Not-hot-dog example) | |
- yay.jpg (Hot-dog example) | |
The data used to train the model is available as a | |
[Kaggle dataset](https://www.kaggle.com/datasets/dansbecker/hot-dog-not-hot-dog). | |
The step-by-step process for generating, training, and testing the Image Classification model is | |
available at my [GitHub respository](https://github.com/datasith/ds-experiments-image-classification/tree/main/hotdog-not-hotdog). | |
If you enjoy my work feel free to follow me here on HF and/or on: | |
- [GitHub](https://github.com/datasith) | |
- [Kaggle](https://kaggle.com/datasith) | |
- [Twitter](https://twitter.com/datasith) | |
- [LinkedIn](https://linkedin.com/in/datasith) | |
Either way, enjoy! | |
''' | |
### -------------------------------- ### | |
### interface creation ### | |
### -------------------------------- ### | |
samples = ['yay.jpg', 'nay.jpg'] | |
def preprocess(image): | |
image = tf.image.resize(image, [256, 256]) | |
img_array = tf.keras.utils.img_to_array(image) | |
img_array = tf.expand_dims(img_array, 0) | |
# image = np.array(image) / 255 | |
# image = np.expand_dims(image, axis=0) | |
return img_array | |
def predict_image(image): | |
# pred = model.predict(preprocess(image)) | |
# results = {} | |
# for row in pred: | |
# for idx, item in enumerate(row): | |
# results[labels[idx]] = float(item) | |
predictions = model.predict(preprocess(image)) | |
scores = tf.nn.softmax(predictions[0]) | |
results = {} | |
for idx, res in enumerate(scores): | |
results[labels[idx]] = float(res) | |
return results | |
# generate img input and text label output | |
image = gr.inputs.Image(label="Upload Your Image Here") | |
label = gr.outputs.Label(num_top_classes=len(labels)) | |
# generate and launch interface | |
interface = gr.Interface(fn=predict_image, inputs=image, | |
outputs=label, article=article, theme='default', | |
title=title, allow_flagging='never', description=description, | |
examples=samples) | |
interface.launch() | |