Spaces:
Runtime error
Runtime error
| import torch | |
| import gradio as gr | |
| from transformers import pipeline | |
| MODEL_NAME = "openai/whisper-small" # this always needs to stay in line 8 :D sorry for the hackiness | |
| lang = "en" | |
| device = 0 if torch.cuda.is_available() else "cpu" | |
| pipe = pipeline( | |
| task="automatic-speech-recognition", | |
| model=MODEL_NAME, | |
| chunk_length_s=30, | |
| device=device, | |
| ) | |
| pipe.model.config.forced_decoder_ids = pipe.tokenizer.get_decoder_prompt_ids(language=lang, task="transcribe") | |
| def transcribe(microphone, file_upload): | |
| warn_output = "" | |
| if microphone and file_upload: | |
| warn_output = ( | |
| "WARNING: You've uploaded an audio file and used the microphone. " | |
| "The recorded file from the microphone will be used, and the uploaded audio will be discarded.\n" | |
| ) | |
| elif not (microphone or file_upload): | |
| return "ERROR: You have to either use the microphone or upload an audio file." | |
| file = microphone if microphone else file_upload | |
| text = pipe(file)["text"] | |
| return warn_output + text | |
| examples = [ | |
| ['Martin Luther king - FREE AT LAST.mp3'], | |
| ['Winston Churchul - ARCH OF VICTOR.mp3'], | |
| ['Voice of Neil Armstrong.mp3'], | |
| ['Speeh by George Washington.mp3'], | |
| ['Speech by John Kennedy.mp3'], | |
| ['Al Gore on Inventing the Internet.mp3'], | |
| ['Alan Greenspan.mp3'], | |
| ['Neil Armstrong - ONE SMALL STEP.mp3'], | |
| ['General Eisenhower announcing D-Day landing.mp3'], | |
| ['Hey Siri.wav'] | |
| ] | |
| css = """ | |
| footer {display:none !important} | |
| .output-markdown{display:none !important} | |
| button.primary { | |
| z-index: 14; | |
| left: 0px; | |
| top: 0px; | |
| cursor: pointer !important; | |
| background: none rgb(17, 20, 45) !important; | |
| border: none !important; | |
| color: rgb(255, 255, 255) !important; | |
| line-height: 1 !important; | |
| border-radius: 6px !important; | |
| transition: box-shadow 200ms ease 0s, background 200ms ease 0s !important; | |
| box-shadow: none !important; | |
| } | |
| button.primary:hover{ | |
| z-index: 14; | |
| left: 0px; | |
| top: 0px; | |
| cursor: pointer !important; | |
| background: none rgb(66, 133, 244) !important; | |
| border: none !important; | |
| color: rgb(255, 255, 255) !important; | |
| line-height: 1 !important; | |
| border-radius: 6px !important; | |
| transition: box-shadow 200ms ease 0s, background 200ms ease 0s !important; | |
| box-shadow: rgb(0 0 0 / 23%) 0px 1px 7px 0px !important; | |
| } | |
| button.gallery-item:hover { | |
| border-color: rgb(37 56 133) !important; | |
| background-color: rgb(229,225,255) !important; | |
| } | |
| """ | |
| with gr.Blocks(css=css) as demo: | |
| with gr.Row(): | |
| gr.Markdown("## Speech Recognition Demo") | |
| with gr.Row(): | |
| mic_input = gr.Audio(label="Microphone Input", interactive=True, type="filepath") | |
| file_upload = gr.Audio(label="File Upload", interactive=True, type="filepath") | |
| with gr.Row(): | |
| output = gr.Textbox(label="Transcription Output") | |
| with gr.Row(): | |
| gr.Examples(examples=examples, inputs=[file_upload], label="Examples") | |
| transcribe_button = gr.Button("Transcribe") | |
| transcribe_button.click(transcribe, inputs=[mic_input, file_upload], outputs=[output]) | |
| demo.launch() | |