Sophie98 commited on
Commit
2578b1e
Β·
1 Parent(s): 71893b8

fix resize

Browse files
Files changed (5) hide show
  1. app.py +2 -2
  2. segmentation.py +0 -4
  3. sofaApp.py +0 -50
  4. styleTransfer.py +11 -5
  5. test.py +0 -1
app.py CHANGED
@@ -17,13 +17,13 @@ def style_sofa(input_img: np.ndarray, style_img: np.ndarray):
17
  """
18
 
19
  # preprocess input images to be (640,640) squares to fit requirements of the segmentation model
20
- resized_img = resize_sofa(input_img)
21
  resized_style = resize_style(style_img)
22
  # generate mask for image
23
  mask = get_mask(resized_img)
24
  styled_sofa = create_styledSofa(resized_img,resized_style)
25
- print('Created styled image')
26
  new_sofa = replace_sofa(resized_img,mask,styled_sofa)
 
27
  return new_sofa
28
 
29
  image = gr.inputs.Image()
 
17
  """
18
 
19
  # preprocess input images to be (640,640) squares to fit requirements of the segmentation model
20
+ resized_img,box = resize_sofa(input_img)
21
  resized_style = resize_style(style_img)
22
  # generate mask for image
23
  mask = get_mask(resized_img)
24
  styled_sofa = create_styledSofa(resized_img,resized_style)
 
25
  new_sofa = replace_sofa(resized_img,mask,styled_sofa)
26
+ new_sofa = Image.fromarray(new_sofa).crop(box)
27
  return new_sofa
28
 
29
  image = gr.inputs.Image()
segmentation.py CHANGED
@@ -51,18 +51,14 @@ def replace_sofa(image,mask,styled_sofa):
51
  # print(mask.shape)
52
  # mask = cv2.cvtColor(mask, cv2.COLOR_BGR2GRAY)
53
  # print(mask.shape)
54
- print('started function')
55
  image = np.array(image)
56
  #image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
57
  styled_sofa = cv2.cvtColor(styled_sofa, cv2.COLOR_BGR2RGB)
58
 
59
- print('reading masks')
60
  _, mask = cv2.threshold(mask, 10, 255, cv2.THRESH_BINARY)
61
  mask_inv = cv2.bitwise_not(mask)
62
- print('creating parts')
63
  image_bg = cv2.bitwise_and(image,image,mask = mask_inv)
64
  sofa_fg = cv2.bitwise_and(styled_sofa,styled_sofa,mask = mask)
65
- print('combining parts')
66
  new_image = cv2.add(image_bg,sofa_fg)
67
  return new_image
68
 
 
51
  # print(mask.shape)
52
  # mask = cv2.cvtColor(mask, cv2.COLOR_BGR2GRAY)
53
  # print(mask.shape)
 
54
  image = np.array(image)
55
  #image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
56
  styled_sofa = cv2.cvtColor(styled_sofa, cv2.COLOR_BGR2RGB)
57
 
 
58
  _, mask = cv2.threshold(mask, 10, 255, cv2.THRESH_BINARY)
59
  mask_inv = cv2.bitwise_not(mask)
 
60
  image_bg = cv2.bitwise_and(image,image,mask = mask_inv)
61
  sofa_fg = cv2.bitwise_and(styled_sofa,styled_sofa,mask = mask)
 
62
  new_image = cv2.add(image_bg,sofa_fg)
63
  return new_image
64
 
sofaApp.py DELETED
@@ -1,50 +0,0 @@
1
- import numpy as np
2
- import gradio as gr
3
- from segmentation import get_mask,replace_sofa
4
- from styleTransfer import resize_sofa,resize_style,create_styledSofa
5
- from PIL import Image
6
-
7
- def style_sofa(input_img: np.ndarray, style_img: np.ndarray):
8
- """
9
- Styles (all) the sofas in the image to the given style.
10
- This function uses a transformer to combine the image with the desired style according
11
- to a generated mask of the sofas in the image.
12
- Input:
13
- input_img = image containing a sofa
14
- style_img = image containing a style
15
- Return:
16
- new_sofa = image containing the styled sofa
17
- """
18
-
19
- # preprocess input images to be (640,640) squares to fit requirements of the segmentation model
20
- resized_img = resize_sofa(input_img)
21
- resized_style = resize_style(style_img)
22
- # generate mask for image
23
- mask = get_mask(resized_img)
24
- styled_sofa = create_styledSofa(resized_img,resized_style)
25
- new_sofa = replace_sofa(resized_img,mask,styled_sofa)
26
- return new_sofa
27
-
28
- image = gr.inputs.Image()
29
- style = gr.inputs.Image()
30
-
31
- demo = gr.Interface(
32
- style_sofa,
33
- [image,style],
34
- 'image',
35
- examples=[
36
- ['sofa_example1.jpg','style_example1.jpg'],
37
- ['sofa_example1.jpg','style_example2.jpg'],
38
- ['sofa_example1.jpg','style_example3.jpg'],
39
- ['sofa_example1.jpg','style_example4.jpg'],
40
- ['sofa_example1.jpg','style_example5.jpg'],
41
- ],
42
- title="Style your sofa",
43
- description="πŸ›‹ Customize your sofa to your wildest dreams! πŸ›‹",
44
- )
45
-
46
- if __name__ == "__main__":
47
- demo.launch(share=True)
48
-
49
-
50
- #https://github.com/dhawan98/Post-Processing-of-Image-Segmentation-using-CRF
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
styleTransfer.py CHANGED
@@ -8,17 +8,19 @@ def resize_sofa(img):
8
  img = Image.fromarray(img)
9
  width, height = img.size
10
  idx = np.argmin([width,height])
 
11
 
12
  if idx==0:
13
  img1 = Image.new(img.mode, (height, height), (255, 255, 255))
14
  img1.paste(img, ((height-width)//2, 0))
 
15
  else:
16
  img1 = Image.new(img.mode, (width, width), (255, 255, 255))
17
  img1.paste(img, (0, (width-height)//2))
 
18
 
19
- newsize = (640, 640) # parameters from test script
20
  im1 = img1.resize(newsize)
21
- return im1
22
 
23
  def resize_style(img):
24
  #img = Image.open(path)#"../style5.jpg")
@@ -68,6 +70,10 @@ def create_styledSofa(sofa,style):
68
 
69
  return styled_sofa
70
 
71
- # image = Image.open('input/sofa.jpg')
72
- # image = np.array(image)[:,:600]
73
- # image = resize_sofa(image)
 
 
 
 
 
8
  img = Image.fromarray(img)
9
  width, height = img.size
10
  idx = np.argmin([width,height])
11
+ newsize = (640, 640) # parameters from test script
12
 
13
  if idx==0:
14
  img1 = Image.new(img.mode, (height, height), (255, 255, 255))
15
  img1.paste(img, ((height-width)//2, 0))
16
+ box = ((height-width)//2*newsize[0]/width, 0, newsize[0] - (height-width)//2*newsize[0]/width, newsize[1])
17
  else:
18
  img1 = Image.new(img.mode, (width, width), (255, 255, 255))
19
  img1.paste(img, (0, (width-height)//2))
20
+ box = (0, (height-width)//2*newsize[1]/height, newsize[0], newsize[1]-(height-width)//2*newsize[1]/height)
21
 
 
22
  im1 = img1.resize(newsize)
23
+ return im1,box
24
 
25
  def resize_style(img):
26
  #img = Image.open(path)#"../style5.jpg")
 
70
 
71
  return styled_sofa
72
 
73
+ # image = Image.open('sofa_office.jpg')
74
+ # image.show()
75
+ # image = np.array(image)
76
+ # image,box = resize_sofa(image)
77
+ # image = image.crop(box)
78
+ # print(box)
79
+ # image.show()
test.py CHANGED
@@ -148,7 +148,6 @@ style_tf = test_transform(style_size, crop)
148
 
149
  for content_path in content_paths:
150
  for style_path in style_paths:
151
- print(content_path)
152
 
153
 
154
  content_tf1 = content_transform()
 
148
 
149
  for content_path in content_paths:
150
  for style_path in style_paths:
 
151
 
152
 
153
  content_tf1 = content_transform()