Sophie98
change to streamlit
ad1ac8f
raw
history blame
4.22 kB
import math
import warnings
from itertools import repeat
import torch
from torch import nn
from torch._six import container_abcs
def drop_path(x, drop_prob: float = 0.0, training: bool = False):
"""
Drop paths (Stochastic Depth) per sample (when applied in main
path of residual blocks). This is the same as the DropConnect impl
I created for EfficientNet, etc networks, however, the original name
is misleading as 'Drop Connect' is a different form of dropout in a
separate paper... See discussion:
https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ...
I've opted for changing the layer and argument names to 'drop path'
rather than mix DropConnect as a layer name and use 'survival rate'
as the argument.
"""
if drop_prob == 0.0 or not training:
return x
keep_prob = 1 - drop_prob
shape = (x.shape[0],) + (1,) * (
x.ndim - 1
) # work with diff dim tensors, not just 2D ConvNets
random_tensor = keep_prob + torch.rand(shape, dtype=x.dtype, device=x.device)
random_tensor.floor_() # binarize
output = x.div(keep_prob) * random_tensor
return output
class DropPath(nn.Module):
"""
Drop paths (Stochastic Depth) per sample
(when applied in main path of residual blocks).
"""
def __init__(self, drop_prob: float = None):
super(DropPath, self).__init__()
self.drop_prob = drop_prob
def forward(self, x):
return drop_path(x, self.drop_prob, self.training)
# From PyTorch internals
def _ntuple(n: int):
def parse(x):
if isinstance(x, container_abcs.Iterable):
return x
return tuple(repeat(x, n))
return parse
to_1tuple = _ntuple(1)
to_2tuple = _ntuple(2)
to_3tuple = _ntuple(3)
to_4tuple = _ntuple(4)
def _no_grad_trunc_normal_(
tensor: torch.tensor, mean: float, std: float, a: float, b: float
):
# Cut & paste from PyTorch official master
# until it's in a few official releases - RW
# Method based on:
# https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf
def norm_cdf(x):
# Computes standard normal cumulative distribution function
return (1.0 + math.erf(x / math.sqrt(2.0))) / 2.0
if (mean < a - 2 * std) or (mean > b + 2 * std):
warnings.warn(
"mean is more than 2 std from [a, b] in nn.init.trunc_normal_. "
"The distribution of values may be incorrect.",
stacklevel=2,
)
with torch.no_grad():
# Values are generated by using a truncated uniform distribution and
# then using the inverse CDF for the normal distribution.
# Get upper and lower cdf values
lower = norm_cdf((a - mean) / std)
upper = norm_cdf((b - mean) / std)
# Uniformly fill tensor with values from [l, u], then translate to
# [2l-1, 2u-1].
tensor.uniform_(2 * lower - 1, 2 * upper - 1)
# Use inverse cdf transform for normal distribution to get truncated
# standard normal
tensor.erfinv_()
# Transform to proper mean, std
tensor.mul_(std * math.sqrt(2.0))
tensor.add_(mean)
# Clamp to ensure it's in the proper range
tensor.clamp_(min=a, max=b)
return tensor
def trunc_normal_(
tensor: torch.tensor,
mean: float = 0.0,
std: float = 1.0,
a: float = -2.0,
b: float = 2.0,
):
r"""Fills the input Tensor with values drawn from a truncated
normal distribution. The values are effectively drawn from the
normal distribution :math:`\mathcal{N}(\text{mean}, \text{std}^2)`
with values outside :math:`[a, b]` redrawn until they are within
the bounds. The method used for generating the random values works
best when :math:`a \leq \text{mean} \leq b`.
Args:
tensor: an n-dimensional `torch.Tensor`
mean: the mean of the normal distribution
std: the standard deviation of the normal distribution
a: the minimum cutoff value
b: the maximum cutoff value
Examples:
>>> w = torch.empty(3, 5)
>>> nn.init.trunc_normal_(w)
"""
return _no_grad_trunc_normal_(tensor, mean, std, a, b)