Spaces:
Build error
Build error
import torch | |
import torch.nn.functional as F | |
from StyleTransfer.srcTransformer.function import calc_mean_std, normal | |
from StyleTransfer.srcTransformer.misc import ( | |
NestedTensor, | |
nested_tensor_from_tensor_list, | |
) | |
from StyleTransfer.srcTransformer.ViT_helper import to_2tuple | |
from torch import nn | |
class PatchEmbed(nn.Module): | |
"""Image to Patch Embedding""" | |
def __init__( | |
self, | |
img_size: int = 256, | |
patch_size: int = 8, | |
in_chans: int = 3, | |
embed_dim: int = 512, | |
): | |
super().__init__() | |
img_size = to_2tuple(img_size) | |
patch_size = to_2tuple(patch_size) | |
num_patches = (img_size[1] // patch_size[1]) * (img_size[0] // patch_size[0]) | |
self.img_size = img_size | |
self.patch_size = patch_size | |
self.num_patches = num_patches | |
self.proj = nn.Conv2d( | |
in_chans, embed_dim, kernel_size=patch_size, stride=patch_size | |
) | |
self.up1 = nn.Upsample(scale_factor=2, mode="nearest") | |
def forward(self, x): | |
B, C, H, W = x.shape | |
x = self.proj(x) | |
return x | |
decoder = nn.Sequential( | |
nn.ReflectionPad2d((1, 1, 1, 1)), | |
nn.Conv2d(512, 256, (3, 3)), | |
nn.ReLU(), | |
nn.Upsample(scale_factor=2, mode="nearest"), | |
nn.ReflectionPad2d((1, 1, 1, 1)), | |
nn.Conv2d(256, 256, (3, 3)), | |
nn.ReLU(), | |
nn.ReflectionPad2d((1, 1, 1, 1)), | |
nn.Conv2d(256, 256, (3, 3)), | |
nn.ReLU(), | |
nn.ReflectionPad2d((1, 1, 1, 1)), | |
nn.Conv2d(256, 256, (3, 3)), | |
nn.ReLU(), | |
nn.ReflectionPad2d((1, 1, 1, 1)), | |
nn.Conv2d(256, 128, (3, 3)), | |
nn.ReLU(), | |
nn.Upsample(scale_factor=2, mode="nearest"), | |
nn.ReflectionPad2d((1, 1, 1, 1)), | |
nn.Conv2d(128, 128, (3, 3)), | |
nn.ReLU(), | |
nn.ReflectionPad2d((1, 1, 1, 1)), | |
nn.Conv2d(128, 64, (3, 3)), | |
nn.ReLU(), | |
nn.Upsample(scale_factor=2, mode="nearest"), | |
nn.ReflectionPad2d((1, 1, 1, 1)), | |
nn.Conv2d(64, 64, (3, 3)), | |
nn.ReLU(), | |
nn.ReflectionPad2d((1, 1, 1, 1)), | |
nn.Conv2d(64, 3, (3, 3)), | |
) | |
vgg = nn.Sequential( | |
nn.Conv2d(3, 3, (1, 1)), | |
nn.ReflectionPad2d((1, 1, 1, 1)), | |
nn.Conv2d(3, 64, (3, 3)), | |
nn.ReLU(), # relu1-1 | |
nn.ReflectionPad2d((1, 1, 1, 1)), | |
nn.Conv2d(64, 64, (3, 3)), | |
nn.ReLU(), # relu1-2 | |
nn.MaxPool2d((2, 2), (2, 2), (0, 0), ceil_mode=True), | |
nn.ReflectionPad2d((1, 1, 1, 1)), | |
nn.Conv2d(64, 128, (3, 3)), | |
nn.ReLU(), # relu2-1 | |
nn.ReflectionPad2d((1, 1, 1, 1)), | |
nn.Conv2d(128, 128, (3, 3)), | |
nn.ReLU(), # relu2-2 | |
nn.MaxPool2d((2, 2), (2, 2), (0, 0), ceil_mode=True), | |
nn.ReflectionPad2d((1, 1, 1, 1)), | |
nn.Conv2d(128, 256, (3, 3)), | |
nn.ReLU(), # relu3-1 | |
nn.ReflectionPad2d((1, 1, 1, 1)), | |
nn.Conv2d(256, 256, (3, 3)), | |
nn.ReLU(), # relu3-2 | |
nn.ReflectionPad2d((1, 1, 1, 1)), | |
nn.Conv2d(256, 256, (3, 3)), | |
nn.ReLU(), # relu3-3 | |
nn.ReflectionPad2d((1, 1, 1, 1)), | |
nn.Conv2d(256, 256, (3, 3)), | |
nn.ReLU(), # relu3-4 | |
nn.MaxPool2d((2, 2), (2, 2), (0, 0), ceil_mode=True), | |
nn.ReflectionPad2d((1, 1, 1, 1)), | |
nn.Conv2d(256, 512, (3, 3)), | |
nn.ReLU(), # relu4-1, this is the last layer used | |
nn.ReflectionPad2d((1, 1, 1, 1)), | |
nn.Conv2d(512, 512, (3, 3)), | |
nn.ReLU(), # relu4-2 | |
nn.ReflectionPad2d((1, 1, 1, 1)), | |
nn.Conv2d(512, 512, (3, 3)), | |
nn.ReLU(), # relu4-3 | |
nn.ReflectionPad2d((1, 1, 1, 1)), | |
nn.Conv2d(512, 512, (3, 3)), | |
nn.ReLU(), # relu4-4 | |
nn.MaxPool2d((2, 2), (2, 2), (0, 0), ceil_mode=True), | |
nn.ReflectionPad2d((1, 1, 1, 1)), | |
nn.Conv2d(512, 512, (3, 3)), | |
nn.ReLU(), # relu5-1 | |
nn.ReflectionPad2d((1, 1, 1, 1)), | |
nn.Conv2d(512, 512, (3, 3)), | |
nn.ReLU(), # relu5-2 | |
nn.ReflectionPad2d((1, 1, 1, 1)), | |
nn.Conv2d(512, 512, (3, 3)), | |
nn.ReLU(), # relu5-3 | |
nn.ReflectionPad2d((1, 1, 1, 1)), | |
nn.Conv2d(512, 512, (3, 3)), | |
nn.ReLU(), # relu5-4 | |
) | |
class MLP(nn.Module): | |
"""Very simple multi-layer perceptron (also called FFN)""" | |
def __init__( | |
self, input_dim: int, hidden_dim: int, output_dim: int, num_layers: int | |
): | |
super().__init__() | |
self.num_layers = num_layers | |
h = [hidden_dim] * (num_layers - 1) | |
self.layers = nn.ModuleList( | |
nn.Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim]) | |
) | |
def forward(self, x): | |
for i, layer in enumerate(self.layers): | |
x = F.relu(layer(x)) if i < self.num_layers - 1 else layer(x) | |
return x | |
class StyTrans(nn.Module): | |
"""This is the style transform transformer module""" | |
def __init__( | |
self, encoder: nn.Sequential, decoder: nn.Sequential, PatchEmbed, transformer | |
): | |
super().__init__() | |
enc_layers = list(encoder.children()) | |
self.enc_1 = nn.Sequential(*enc_layers[:4]) # input -> relu1_1 | |
self.enc_2 = nn.Sequential(*enc_layers[4:11]) # relu1_1 -> relu2_1 | |
self.enc_3 = nn.Sequential(*enc_layers[11:18]) # relu2_1 -> relu3_1 | |
self.enc_4 = nn.Sequential(*enc_layers[18:31]) # relu3_1 -> relu4_1 | |
self.enc_5 = nn.Sequential(*enc_layers[31:44]) # relu4_1 -> relu5_1 | |
for name in ["enc_1", "enc_2", "enc_3", "enc_4", "enc_5"]: | |
for param in getattr(self, name).parameters(): | |
param.requires_grad = False | |
self.mse_loss = nn.MSELoss() | |
self.transformer = transformer | |
self.decode = decoder | |
self.embedding = PatchEmbed | |
def encode_with_intermediate(self, input): | |
results = [input] | |
for i in range(5): | |
func = getattr(self, "enc_{:d}".format(i + 1)) | |
results.append(func(results[-1])) | |
return results[1:] | |
def calc_content_loss(self, input, target): | |
assert input.size() == target.size() | |
assert target.requires_grad is False | |
return self.mse_loss(input, target) | |
def calc_style_loss(self, input, target): | |
assert input.size() == target.size() | |
assert target.requires_grad is False | |
input_mean, input_std = calc_mean_std(input) | |
target_mean, target_std = calc_mean_std(target) | |
return self.mse_loss(input_mean, target_mean) + self.mse_loss( | |
input_std, target_std | |
) | |
def forward(self, samples_c: NestedTensor, samples_s: NestedTensor): | |
"""The forward expects a NestedTensor, which consists of: | |
- samples.tensor: batched images, of shape [batch_size x 3 x H x W] | |
- samples.mask: a binary mask of shape [batch_size x H x W], | |
containing 1 on padded pixels | |
""" | |
content_input = samples_c | |
style_input = samples_s | |
if isinstance(samples_c, (list, torch.Tensor)): | |
samples_c = nested_tensor_from_tensor_list( | |
samples_c | |
) # support different-sized images padding is used for mask [tensor, mask] | |
if isinstance(samples_s, (list, torch.Tensor)): | |
samples_s = nested_tensor_from_tensor_list(samples_s) | |
# features used to calcate loss | |
content_feats = self.encode_with_intermediate(samples_c.tensors) | |
style_feats = self.encode_with_intermediate(samples_s.tensors) | |
# Linear projection | |
style = self.embedding(samples_s.tensors) | |
content = self.embedding(samples_c.tensors) | |
# postional embedding is calculated in transformer.py | |
pos_s = None | |
pos_c = None | |
mask = None | |
hs = self.transformer(style, mask, content, pos_c, pos_s) | |
Ics = self.decode(hs) | |
Ics_feats = self.encode_with_intermediate(Ics) | |
loss_c = self.calc_content_loss( | |
normal(Ics_feats[-1]), normal(content_feats[-1]) | |
) + self.calc_content_loss(normal(Ics_feats[-2]), normal(content_feats[-2])) | |
# Style loss | |
loss_s = self.calc_style_loss(Ics_feats[0], style_feats[0]) | |
for i in range(1, 5): | |
loss_s += self.calc_style_loss(Ics_feats[i], style_feats[i]) | |
Icc = self.decode(self.transformer(content, mask, content, pos_c, pos_c)) | |
Iss = self.decode(self.transformer(style, mask, style, pos_s, pos_s)) | |
# Identity losses lambda 1 | |
loss_lambda1 = self.calc_content_loss( | |
Icc, content_input | |
) + self.calc_content_loss(Iss, style_input) | |
# Identity losses lambda 2 | |
Icc_feats = self.encode_with_intermediate(Icc) | |
Iss_feats = self.encode_with_intermediate(Iss) | |
loss_lambda2 = self.calc_content_loss( | |
Icc_feats[0], content_feats[0] | |
) + self.calc_content_loss(Iss_feats[0], style_feats[0]) | |
for i in range(1, 5): | |
loss_lambda2 += self.calc_content_loss( | |
Icc_feats[i], content_feats[i] | |
) + self.calc_content_loss(Iss_feats[i], style_feats[i]) | |
# Please select and comment out one of the following two sentences | |
return Ics, loss_c, loss_s, loss_lambda1, loss_lambda2 # train | |
# return Ics #test | |