Spaces:
Build error
Build error
import copy | |
from typing import Optional, List | |
import torch | |
import torch.nn.functional as F | |
from torch import nn, Tensor | |
from function import normal,normal_style | |
import numpy as np | |
import os | |
device = torch.device("cuda:2" if torch.cuda.is_available() else "cpu") | |
os.environ["CUDA_VISIBLE_DEVICES"] = "2, 3" | |
class Transformer(nn.Module): | |
def __init__(self, d_model=512, nhead=8, num_encoder_layers=3, | |
num_decoder_layers=3, dim_feedforward=2048, dropout=0.1, | |
activation="relu", normalize_before=False, | |
return_intermediate_dec=False): | |
super().__init__() | |
encoder_layer = TransformerEncoderLayer(d_model, nhead, dim_feedforward, | |
dropout, activation, normalize_before) | |
encoder_norm = nn.LayerNorm(d_model) if normalize_before else None | |
self.encoder_c = TransformerEncoder(encoder_layer, num_encoder_layers, encoder_norm) | |
self.encoder_s = TransformerEncoder(encoder_layer, num_encoder_layers, encoder_norm) | |
decoder_layer = TransformerDecoderLayer(d_model, nhead, dim_feedforward, | |
dropout, activation, normalize_before) | |
decoder_norm = nn.LayerNorm(d_model) | |
self.decoder = TransformerDecoder(decoder_layer, num_decoder_layers, decoder_norm, | |
return_intermediate=return_intermediate_dec) | |
self._reset_parameters() | |
self.d_model = d_model | |
self.nhead = nhead | |
self.new_ps = nn.Conv2d(512 , 512 , (1,1)) | |
self.averagepooling = nn.AdaptiveAvgPool2d(18) | |
def _reset_parameters(self): | |
for p in self.parameters(): | |
if p.dim() > 1: | |
nn.init.xavier_uniform_(p) | |
def forward(self, style, mask , content, pos_embed_c, pos_embed_s): | |
# content-aware positional embedding | |
content_pool = self.averagepooling(content) | |
pos_c = self.new_ps(content_pool) | |
pos_embed_c = F.interpolate(pos_c, mode='bilinear',size= style.shape[-2:]) | |
###flatten NxCxHxW to HWxNxC | |
style = style.flatten(2).permute(2, 0, 1) | |
if pos_embed_s is not None: | |
pos_embed_s = pos_embed_s.flatten(2).permute(2, 0, 1) | |
content = content.flatten(2).permute(2, 0, 1) | |
if pos_embed_c is not None: | |
pos_embed_c = pos_embed_c.flatten(2).permute(2, 0, 1) | |
style = self.encoder_s(style, src_key_padding_mask=mask, pos=pos_embed_s) | |
content = self.encoder_c(content, src_key_padding_mask=mask, pos=pos_embed_c) | |
hs = self.decoder(content, style, memory_key_padding_mask=mask, | |
pos=pos_embed_s, query_pos=pos_embed_c)[0] | |
### HWxNxC to NxCxHxW to | |
N, B, C= hs.shape | |
H = int(np.sqrt(N)) | |
hs = hs.permute(1, 2, 0) | |
hs = hs.view(B, C, -1,H) | |
return hs | |
class TransformerEncoder(nn.Module): | |
def __init__(self, encoder_layer, num_layers, norm=None): | |
super().__init__() | |
self.layers = _get_clones(encoder_layer, num_layers) | |
self.num_layers = num_layers | |
self.norm = norm | |
def forward(self, src, | |
mask: Optional[Tensor] = None, | |
src_key_padding_mask: Optional[Tensor] = None, | |
pos: Optional[Tensor] = None): | |
output = src | |
for layer in self.layers: | |
output = layer(output, src_mask=mask, | |
src_key_padding_mask=src_key_padding_mask, pos=pos) | |
if self.norm is not None: | |
output = self.norm(output) | |
return output | |
class TransformerDecoder(nn.Module): | |
def __init__(self, decoder_layer, num_layers, norm=None, return_intermediate=False): | |
super().__init__() | |
self.layers = _get_clones(decoder_layer, num_layers) | |
self.num_layers = num_layers | |
self.norm = norm | |
self.return_intermediate = return_intermediate | |
def forward(self, tgt, memory, | |
tgt_mask: Optional[Tensor] = None, | |
memory_mask: Optional[Tensor] = None, | |
tgt_key_padding_mask: Optional[Tensor] = None, | |
memory_key_padding_mask: Optional[Tensor] = None, | |
pos: Optional[Tensor] = None, | |
query_pos: Optional[Tensor] = None): | |
output = tgt | |
intermediate = [] | |
for layer in self.layers: | |
output = layer(output, memory, tgt_mask=tgt_mask, | |
memory_mask=memory_mask, | |
tgt_key_padding_mask=tgt_key_padding_mask, | |
memory_key_padding_mask=memory_key_padding_mask, | |
pos=pos, query_pos=query_pos) | |
if self.return_intermediate: | |
intermediate.append(self.norm(output)) | |
if self.norm is not None: | |
output = self.norm(output) | |
if self.return_intermediate: | |
intermediate.pop() | |
intermediate.append(output) | |
if self.return_intermediate: | |
return torch.stack(intermediate) | |
return output.unsqueeze(0) | |
class TransformerEncoderLayer(nn.Module): | |
def __init__(self, d_model, nhead, dim_feedforward=2048, dropout=0.1, | |
activation="relu", normalize_before=False): | |
super().__init__() | |
self.self_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout) | |
# Implementation of Feedforward model | |
self.linear1 = nn.Linear(d_model, dim_feedforward) | |
self.dropout = nn.Dropout(dropout) | |
self.linear2 = nn.Linear(dim_feedforward, d_model) | |
self.norm1 = nn.LayerNorm(d_model) | |
self.norm2 = nn.LayerNorm(d_model) | |
self.dropout1 = nn.Dropout(dropout) | |
self.dropout2 = nn.Dropout(dropout) | |
self.activation = _get_activation_fn(activation) | |
self.normalize_before = normalize_before | |
def with_pos_embed(self, tensor, pos: Optional[Tensor]): | |
return tensor if pos is None else tensor + pos | |
def forward_post(self, | |
src, | |
src_mask: Optional[Tensor] = None, | |
src_key_padding_mask: Optional[Tensor] = None, | |
pos: Optional[Tensor] = None): | |
q = k = self.with_pos_embed(src, pos) | |
# q = k = src | |
# print(q.size(),k.size(),src.size()) | |
src2 = self.self_attn(q, k, value=src, attn_mask=src_mask, | |
key_padding_mask=src_key_padding_mask)[0] | |
src = src + self.dropout1(src2) | |
src = self.norm1(src) | |
src2 = self.linear2(self.dropout(self.activation(self.linear1(src)))) | |
src = src + self.dropout2(src2) | |
src = self.norm2(src) | |
return src | |
def forward_pre(self, src, | |
src_mask: Optional[Tensor] = None, | |
src_key_padding_mask: Optional[Tensor] = None, | |
pos: Optional[Tensor] = None): | |
src2 = self.norm1(src) | |
q = k = self.with_pos_embed(src2, pos) | |
src2 = self.self_attn(q, k, value=src2, attn_mask=src_mask, | |
key_padding_mask=src_key_padding_mask)[0] | |
src = src + self.dropout1(src2) | |
src2 = self.norm2(src) | |
src2 = self.linear2(self.dropout(self.activation(self.linear1(src2)))) | |
src = src + self.dropout2(src2) | |
return src | |
def forward(self, src, | |
src_mask: Optional[Tensor] = None, | |
src_key_padding_mask: Optional[Tensor] = None, | |
pos: Optional[Tensor] = None): | |
if self.normalize_before: | |
return self.forward_pre(src, src_mask, src_key_padding_mask, pos) | |
return self.forward_post(src, src_mask, src_key_padding_mask, pos) | |
class TransformerDecoderLayer(nn.Module): | |
def __init__(self, d_model, nhead, dim_feedforward=2048, dropout=0.1, | |
activation="relu", normalize_before=False): | |
super().__init__() | |
# d_model embedding dim | |
self.self_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout) | |
self.multihead_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout) | |
# Implementation of Feedforward model | |
self.linear1 = nn.Linear(d_model, dim_feedforward) | |
self.dropout = nn.Dropout(dropout) | |
self.linear2 = nn.Linear(dim_feedforward, d_model) | |
self.norm1 = nn.LayerNorm(d_model) | |
self.norm2 = nn.LayerNorm(d_model) | |
self.norm3 = nn.LayerNorm(d_model) | |
self.dropout1 = nn.Dropout(dropout) | |
self.dropout2 = nn.Dropout(dropout) | |
self.dropout3 = nn.Dropout(dropout) | |
self.activation = _get_activation_fn(activation) | |
self.normalize_before = normalize_before | |
def with_pos_embed(self, tensor, pos: Optional[Tensor]): | |
return tensor if pos is None else tensor + pos | |
def forward_post(self, tgt, memory, | |
tgt_mask: Optional[Tensor] = None, | |
memory_mask: Optional[Tensor] = None, | |
tgt_key_padding_mask: Optional[Tensor] = None, | |
memory_key_padding_mask: Optional[Tensor] = None, | |
pos: Optional[Tensor] = None, | |
query_pos: Optional[Tensor] = None): | |
q = self.with_pos_embed(tgt, query_pos) | |
k = self.with_pos_embed(memory, pos) | |
v = memory | |
tgt2 = self.self_attn(q, k, v, attn_mask=tgt_mask, | |
key_padding_mask=tgt_key_padding_mask)[0] | |
tgt = tgt + self.dropout1(tgt2) | |
tgt = self.norm1(tgt) | |
tgt2 = self.multihead_attn(query=self.with_pos_embed(tgt, query_pos), | |
key=self.with_pos_embed(memory, pos), | |
value=memory, attn_mask=memory_mask, | |
key_padding_mask=memory_key_padding_mask)[0] | |
tgt = tgt + self.dropout2(tgt2) | |
tgt = self.norm2(tgt) | |
tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt)))) | |
tgt = tgt + self.dropout3(tgt2) | |
tgt = self.norm3(tgt) | |
return tgt | |
def forward_pre(self, tgt, memory, | |
tgt_mask: Optional[Tensor] = None, | |
memory_mask: Optional[Tensor] = None, | |
tgt_key_padding_mask: Optional[Tensor] = None, | |
memory_key_padding_mask: Optional[Tensor] = None, | |
pos: Optional[Tensor] = None, | |
query_pos: Optional[Tensor] = None): | |
tgt2 = self.norm1(tgt) | |
q = k = self.with_pos_embed(tgt2, query_pos) | |
tgt2 = self.self_attn(q, k, value=tgt2, attn_mask=tgt_mask, | |
key_padding_mask=tgt_key_padding_mask)[0] | |
tgt = tgt + self.dropout1(tgt2) | |
tgt2 = self.norm2(tgt) | |
tgt2 = self.multihead_attn(query=self.with_pos_embed(tgt2, query_pos), | |
key=self.with_pos_embed(memory, pos), | |
value=memory, attn_mask=memory_mask, | |
key_padding_mask=memory_key_padding_mask)[0] | |
tgt = tgt + self.dropout2(tgt2) | |
tgt2 = self.norm3(tgt) | |
tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt2)))) | |
tgt = tgt + self.dropout3(tgt2) | |
return tgt | |
def forward(self, tgt, memory, | |
tgt_mask: Optional[Tensor] = None, | |
memory_mask: Optional[Tensor] = None, | |
tgt_key_padding_mask: Optional[Tensor] = None, | |
memory_key_padding_mask: Optional[Tensor] = None, | |
pos: Optional[Tensor] = None, | |
query_pos: Optional[Tensor] = None): | |
if self.normalize_before: | |
return self.forward_pre(tgt, memory, tgt_mask, memory_mask, | |
tgt_key_padding_mask, memory_key_padding_mask, pos, query_pos) | |
return self.forward_post(tgt, memory, tgt_mask, memory_mask, | |
tgt_key_padding_mask, memory_key_padding_mask, pos, query_pos) | |
def _get_clones(module, N): | |
return nn.ModuleList([copy.deepcopy(module) for i in range(N)]) | |
def build_transformer(args): | |
return Transformer( | |
d_model=args.hidden_dim, | |
dropout=args.dropout, | |
nhead=args.nheads, | |
dim_feedforward=args.dim_feedforward, | |
num_encoder_layers=args.enc_layers, | |
num_decoder_layers=args.dec_layers, | |
normalize_before=args.pre_norm, | |
return_intermediate_dec=True, | |
) | |
def _get_activation_fn(activation): | |
"""Return an activation function given a string""" | |
if activation == "relu": | |
return F.relu | |
if activation == "gelu": | |
return F.gelu | |
if activation == "glu": | |
return F.glu | |
raise RuntimeError(F"activation should be relu/gelu, not {activation}.") | |