Spaces:
Sleeping
Sleeping
improved code
Browse files
app.py
CHANGED
@@ -12,16 +12,21 @@ import streamlit as st
|
|
12 |
FILE_PATH = "anjibot_chunks.json"
|
13 |
BATCH_SIZE = 384
|
14 |
INDEX_NAME = "groq-llama-3-rag"
|
15 |
-
PINECONE_API_KEY = os.getenv
|
16 |
-
GROQ_API_KEY = os.getenv
|
17 |
DIMENSIONS = 768
|
18 |
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
|
20 |
def load_data(file_path: str) -> dict:
|
21 |
with open(file_path, 'r') as file:
|
22 |
return json.load(file)
|
23 |
|
24 |
-
|
25 |
def initialize_pinecone(api_key: str, index_name: str, dims: int) -> any:
|
26 |
pc = Pinecone(api_key=api_key)
|
27 |
spec = ServerlessSpec(cloud="aws", region='us-east-1')
|
@@ -38,10 +43,7 @@ def initialize_pinecone(api_key: str, index_name: str, dims: int) -> any:
|
|
38 |
|
39 |
return pc.Index(index_name)
|
40 |
|
41 |
-
|
42 |
def upsert_data_to_pinecone(index: any, data: dict):
|
43 |
-
encoder = SentenceTransformer('dwzhu/e5-base-4k')
|
44 |
-
|
45 |
for i in tqdm(range(0, len(data['id']), BATCH_SIZE)):
|
46 |
# Find end of batch
|
47 |
i_end = min(len(data['id']), i + BATCH_SIZE)
|
@@ -60,17 +62,15 @@ def upsert_data_to_pinecone(index: any, data: dict):
|
|
60 |
to_upsert = list(zip(batch["id"], embeds, batch["metadata"]))
|
61 |
index.upsert(vectors=to_upsert)
|
62 |
|
63 |
-
|
64 |
def get_docs(query: str, index: any, encoder: any, top_k: int) -> list[str]:
|
65 |
xq = encoder.encode(query)
|
66 |
res = index.query(vector=xq.tolist(), top_k=top_k, include_metadata=True)
|
67 |
return [x["metadata"]['content'] for x in res["matches"]]
|
68 |
|
69 |
-
|
70 |
def get_response(query: str, docs: list[str], groq_client: any) -> str:
|
71 |
system_message = (
|
72 |
-
"You are Anjibot, the AI course rep of 400 Level Computer Science department. You are always helpful, jovial, can be
|
73 |
-
"Provide the answer to class
|
74 |
"context provided below.\n"
|
75 |
"If you don't the answer to the user's question based on your pretrained knowledge and the context provided, just direct the user to Anji the human course rep.\n"
|
76 |
"Anji's phone number: 08145170886.\n\n"
|
@@ -88,19 +88,11 @@ def get_response(query: str, docs: list[str], groq_client: any) -> str:
|
|
88 |
)
|
89 |
return chat_response.choices[0].message.content
|
90 |
|
91 |
-
|
92 |
def handle_query(user_query: str):
|
93 |
-
#
|
94 |
-
data = load_data(FILE_PATH)
|
95 |
-
|
96 |
-
# Initialize Pinecone
|
97 |
-
index = initialize_pinecone(PINECONE_API_KEY, INDEX_NAME, DIMENSIONS)
|
98 |
-
|
99 |
-
# Upsert data into Pinecone
|
100 |
upsert_data_to_pinecone(index, data)
|
101 |
|
102 |
-
# Initialize
|
103 |
-
encoder = SentenceTransformer('dwzhu/e5-base-4k')
|
104 |
groq_client = Groq(api_key=GROQ_API_KEY)
|
105 |
|
106 |
# Get relevant documents
|
@@ -132,5 +124,3 @@ def main():
|
|
132 |
|
133 |
if __name__ == "__main__":
|
134 |
main()
|
135 |
-
|
136 |
-
|
|
|
12 |
FILE_PATH = "anjibot_chunks.json"
|
13 |
BATCH_SIZE = 384
|
14 |
INDEX_NAME = "groq-llama-3-rag"
|
15 |
+
PINECONE_API_KEY = os.getenv("PINECONE_API_KEY")
|
16 |
+
GROQ_API_KEY = os.getenv("GROQ_API_KEY")
|
17 |
DIMENSIONS = 768
|
18 |
|
19 |
+
# Load data once at the start
|
20 |
+
data = load_data(FILE_PATH)
|
21 |
+
|
22 |
+
# Initialize Pinecone and SentenceTransformer once
|
23 |
+
index = initialize_pinecone(PINECONE_API_KEY, INDEX_NAME, DIMENSIONS)
|
24 |
+
encoder = SentenceTransformer('dwzhu/e5-base-4k')
|
25 |
|
26 |
def load_data(file_path: str) -> dict:
|
27 |
with open(file_path, 'r') as file:
|
28 |
return json.load(file)
|
29 |
|
|
|
30 |
def initialize_pinecone(api_key: str, index_name: str, dims: int) -> any:
|
31 |
pc = Pinecone(api_key=api_key)
|
32 |
spec = ServerlessSpec(cloud="aws", region='us-east-1')
|
|
|
43 |
|
44 |
return pc.Index(index_name)
|
45 |
|
|
|
46 |
def upsert_data_to_pinecone(index: any, data: dict):
|
|
|
|
|
47 |
for i in tqdm(range(0, len(data['id']), BATCH_SIZE)):
|
48 |
# Find end of batch
|
49 |
i_end = min(len(data['id']), i + BATCH_SIZE)
|
|
|
62 |
to_upsert = list(zip(batch["id"], embeds, batch["metadata"]))
|
63 |
index.upsert(vectors=to_upsert)
|
64 |
|
|
|
65 |
def get_docs(query: str, index: any, encoder: any, top_k: int) -> list[str]:
|
66 |
xq = encoder.encode(query)
|
67 |
res = index.query(vector=xq.tolist(), top_k=top_k, include_metadata=True)
|
68 |
return [x["metadata"]['content'] for x in res["matches"]]
|
69 |
|
|
|
70 |
def get_response(query: str, docs: list[str], groq_client: any) -> str:
|
71 |
system_message = (
|
72 |
+
"You are Anjibot, the AI course rep of 400 Level Computer Science department. You are always helpful, jovial, can be sarcastic but still sweet.\n"
|
73 |
+
"Provide the answer to class-related queries using\n"
|
74 |
"context provided below.\n"
|
75 |
"If you don't the answer to the user's question based on your pretrained knowledge and the context provided, just direct the user to Anji the human course rep.\n"
|
76 |
"Anji's phone number: 08145170886.\n\n"
|
|
|
88 |
)
|
89 |
return chat_response.choices[0].message.content
|
90 |
|
|
|
91 |
def handle_query(user_query: str):
|
92 |
+
# Upsert data into Pinecone (if necessary)
|
|
|
|
|
|
|
|
|
|
|
|
|
93 |
upsert_data_to_pinecone(index, data)
|
94 |
|
95 |
+
# Initialize Groq client
|
|
|
96 |
groq_client = Groq(api_key=GROQ_API_KEY)
|
97 |
|
98 |
# Get relevant documents
|
|
|
124 |
|
125 |
if __name__ == "__main__":
|
126 |
main()
|
|
|
|