Spaces:
Sleeping
Sleeping
Mustehson
commited on
Commit
•
a831d50
1
Parent(s):
fda45ca
Scrape&Clean Data
Browse files- app.py +124 -59
- logo.png +0 -0
- requirements.txt +8 -1
app.py
CHANGED
@@ -1,63 +1,128 @@
|
|
|
|
1 |
import gradio as gr
|
2 |
-
from
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
8 |
-
|
9 |
-
|
10 |
-
def respond(
|
11 |
-
message,
|
12 |
-
history: list[tuple[str, str]],
|
13 |
-
system_message,
|
14 |
-
max_tokens,
|
15 |
-
temperature,
|
16 |
-
top_p,
|
17 |
-
):
|
18 |
-
messages = [{"role": "system", "content": system_message}]
|
19 |
-
|
20 |
-
for val in history:
|
21 |
-
if val[0]:
|
22 |
-
messages.append({"role": "user", "content": val[0]})
|
23 |
-
if val[1]:
|
24 |
-
messages.append({"role": "assistant", "content": val[1]})
|
25 |
-
|
26 |
-
messages.append({"role": "user", "content": message})
|
27 |
-
|
28 |
-
response = ""
|
29 |
-
|
30 |
-
for message in client.chat_completion(
|
31 |
-
messages,
|
32 |
-
max_tokens=max_tokens,
|
33 |
-
stream=True,
|
34 |
-
temperature=temperature,
|
35 |
-
top_p=top_p,
|
36 |
-
):
|
37 |
-
token = message.choices[0].delta.content
|
38 |
-
|
39 |
-
response += token
|
40 |
-
yield response
|
41 |
-
|
42 |
-
"""
|
43 |
-
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
44 |
-
"""
|
45 |
-
demo = gr.ChatInterface(
|
46 |
-
respond,
|
47 |
-
additional_inputs=[
|
48 |
-
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
49 |
-
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
50 |
-
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
51 |
-
gr.Slider(
|
52 |
-
minimum=0.1,
|
53 |
-
maximum=1.0,
|
54 |
-
value=0.95,
|
55 |
-
step=0.05,
|
56 |
-
label="Top-p (nucleus sampling)",
|
57 |
-
),
|
58 |
-
],
|
59 |
-
)
|
60 |
|
61 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
if __name__ == "__main__":
|
63 |
-
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import re
|
2 |
import gradio as gr
|
3 |
+
from io import StringIO
|
4 |
+
import pandas as pd
|
5 |
+
from langchain_community.document_loaders import RecursiveUrlLoader
|
6 |
+
from langchain_text_splitters import RecursiveCharacterTextSplitter
|
7 |
+
from langchain_community.document_transformers import Html2TextTransformer
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
|
10 |
+
TAB_LINES = 22
|
11 |
+
|
12 |
+
|
13 |
+
def scrape_text(url):
|
14 |
+
try:
|
15 |
+
loader = RecursiveUrlLoader(url=url, max_depth=None,
|
16 |
+
prevent_outside=True, check_response_status=True)
|
17 |
+
documents = loader.load()
|
18 |
+
except Exception as e:
|
19 |
+
print(f"Error loading URL: {e}")
|
20 |
+
return None
|
21 |
+
return documents
|
22 |
+
|
23 |
+
|
24 |
+
def clean_text(documents):
|
25 |
+
html2text = Html2TextTransformer()
|
26 |
+
docs_transformed = html2text.transform_documents([documents])
|
27 |
+
cleaned_string = re.sub(r'\n\n+|\n+|\s+', ' ', docs_transformed[0].page_content)
|
28 |
+
docs_transformed[0].page_content = cleaned_string
|
29 |
+
return docs_transformed
|
30 |
+
|
31 |
+
|
32 |
+
def remove_tables(docs):
|
33 |
+
table_pattern = re.compile(r'<table.*?>.*?</table>', re.DOTALL)
|
34 |
+
docs.page_content = table_pattern.sub('', docs.page_content)
|
35 |
+
return docs
|
36 |
+
|
37 |
+
|
38 |
+
def format_chunks_with_spaces(chunks):
|
39 |
+
separator = "\n\n---\n\n"
|
40 |
+
formatted_chunks = ""
|
41 |
+
for i, chunk in enumerate(chunks):
|
42 |
+
formatted_chunks += f"Chunk {i+1}: \n\n"
|
43 |
+
formatted_chunks += chunk.page_content
|
44 |
+
formatted_chunks += separator
|
45 |
+
return formatted_chunks
|
46 |
+
|
47 |
+
|
48 |
+
def get_tables(raw_html):
|
49 |
+
try:
|
50 |
+
tables = pd.read_html(StringIO(str(raw_html.page_content)))
|
51 |
+
except Exception as e:
|
52 |
+
print(f"Error reading table: {e}")
|
53 |
+
return None
|
54 |
+
return tables
|
55 |
+
|
56 |
+
|
57 |
+
def concat_dfs(df_list):
|
58 |
+
concatenated_df = pd.concat(df_list, ignore_index=True)
|
59 |
+
return concatenated_df
|
60 |
+
|
61 |
+
|
62 |
+
def get_docs(url):
|
63 |
+
raw_html = scrape_text(url)
|
64 |
+
if raw_html is None:
|
65 |
+
return None, None, None, None, None
|
66 |
+
|
67 |
+
tables_list = get_tables(raw_html[0])
|
68 |
+
|
69 |
+
if tables_list is not None:
|
70 |
+
concat_tables = concat_dfs(tables_list)
|
71 |
+
else:
|
72 |
+
concat_tables = None
|
73 |
+
|
74 |
+
tables_rmv_html = remove_tables(raw_html[0])
|
75 |
+
clean_docs = clean_text(tables_rmv_html)
|
76 |
+
|
77 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1024, chunk_overlap=200)
|
78 |
+
documents_splits = text_splitter.split_documents(clean_docs)
|
79 |
+
formatted_chunks = format_chunks_with_spaces(documents_splits)
|
80 |
+
|
81 |
+
return raw_html[0].page_content, clean_docs[0].page_content, concat_tables, raw_html[0].metadata, formatted_chunks
|
82 |
+
|
83 |
+
|
84 |
+
with gr.Blocks(theme=gr.themes.Soft(primary_hue="purple", secondary_hue="indigo")) as demo:
|
85 |
+
|
86 |
+
gr.Image("logo.png", label=None, show_label=False, container=False, height=100)
|
87 |
+
|
88 |
+
gr.Markdown("""
|
89 |
+
<div style='text-align: center;'>
|
90 |
+
<strong style='font-size: 36px;'>Domain Document Indexing</strong>
|
91 |
+
|
92 |
+
</div>
|
93 |
+
""")
|
94 |
+
|
95 |
+
with gr.Row():
|
96 |
+
with gr.Column(scale=1):
|
97 |
+
url_input = gr.Textbox(lines=5, label="URL", placeholder="Enter your URL here...")
|
98 |
+
scarpe_url_button = gr.Button(value="Scrape & Create Embeddings", variant="primary")
|
99 |
+
|
100 |
+
with gr.Column(elem_id = "col_container", scale=2):
|
101 |
+
with gr.Tabs():
|
102 |
+
with gr.Tab("RAW HTML"):
|
103 |
+
raw_page_content = gr.Textbox(lines=TAB_LINES, label="Page Content HTML", value="", interactive=False,
|
104 |
+
autoscroll=False)
|
105 |
+
with gr.Tab("Clean Content"):
|
106 |
+
page_content = gr.Textbox(lines=TAB_LINES, label="Clean Page Content", value="", interactive=False,
|
107 |
+
autoscroll=False)
|
108 |
+
with gr.Tab("Tables"):
|
109 |
+
tables = gr.Textbox(lines=TAB_LINES, label="Tables", value="", interactive=False,
|
110 |
+
autoscroll=False)
|
111 |
+
with gr.Tab("Chunks"):
|
112 |
+
parsed_chunks = gr.Textbox(lines=TAB_LINES, label="Parsed Chunks", value="", interactive=False,
|
113 |
+
autoscroll=False)
|
114 |
+
with gr.Tab("Metadata"):
|
115 |
+
metadata = gr.Textbox(lines=TAB_LINES, label="Metadata", value="", interactive=False,
|
116 |
+
autoscroll=False)
|
117 |
+
|
118 |
+
scarpe_url_button.click(get_docs, inputs=url_input, outputs=[raw_page_content, page_content, tables,
|
119 |
+
metadata, parsed_chunks])
|
120 |
+
|
121 |
+
|
122 |
if __name__ == "__main__":
|
123 |
+
demo.launch()
|
124 |
+
|
125 |
+
|
126 |
+
|
127 |
+
|
128 |
+
|
logo.png
ADDED
requirements.txt
CHANGED
@@ -1 +1,8 @@
|
|
1 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio
|
2 |
+
pandas
|
3 |
+
langchain
|
4 |
+
langchain-community
|
5 |
+
langchain-text-splitters
|
6 |
+
html2text
|
7 |
+
lxml
|
8 |
+
beautifulsoup4
|