|
import os |
|
import json |
|
import bcrypt |
|
import pandas as pd |
|
import numpy as np |
|
import plotly.express as px |
|
from typing import List |
|
from pathlib import Path |
|
from langchain_openai import ChatOpenAI |
|
from langchain.schema.runnable.config import RunnableConfig |
|
from langchain.schema import StrOutputParser |
|
from langchain_core.prompts import ChatPromptTemplate |
|
|
|
from langchain.agents import AgentExecutor |
|
from langchain.agents.agent_types import AgentType |
|
from langchain_experimental.agents.agent_toolkits import create_pandas_dataframe_agent, create_csv_agent |
|
|
|
import chainlit as cl |
|
from chainlit.input_widget import TextInput, Select, Switch, Slider |
|
|
|
from deep_translator import GoogleTranslator |
|
|
|
@cl.password_auth_callback |
|
def auth_callback(username: str, password: str): |
|
auth = json.loads(os.environ['CHAINLIT_AUTH_LOGIN']) |
|
ident = next(d['ident'] for d in auth if d['ident'] == username) |
|
pwd = next(d['pwd'] for d in auth if d['ident'] == username) |
|
resultLogAdmin = bcrypt.checkpw(username.encode('utf-8'), bcrypt.hashpw(ident.encode('utf-8'), bcrypt.gensalt())) |
|
resultPwdAdmin = bcrypt.checkpw(password.encode('utf-8'), bcrypt.hashpw(pwd.encode('utf-8'), bcrypt.gensalt())) |
|
resultRole = next(d['role'] for d in auth if d['ident'] == username) |
|
if resultLogAdmin and resultPwdAdmin and resultRole == "admindatapcc": |
|
return cl.User( |
|
identifier=ident + " : 🧑💼 Admin Datapcc", metadata={"role": "admin", "provider": "credentials"} |
|
) |
|
elif resultLogAdmin and resultPwdAdmin and resultRole == "userdatapcc": |
|
return cl.User( |
|
identifier=ident + " : 🧑🎓 User Datapcc", metadata={"role": "user", "provider": "credentials"} |
|
) |
|
|
|
def create_agent(filename: str): |
|
""" |
|
Create an agent that can access and use a large language model (LLM). |
|
|
|
Args: |
|
filename: The path to the CSV file that contains the data. |
|
|
|
Returns: |
|
An agent that can access and use the LLM. |
|
""" |
|
|
|
|
|
os.environ['OPENAI_API_KEY'] = os.environ['OPENAI_API_KEY'] |
|
llm = ChatOpenAI(temperature=0, model="gpt-4o-2024-05-13") |
|
|
|
|
|
df = pd.read_csv(filename) |
|
|
|
|
|
return create_csv_agent(llm, filename, verbose=False, allow_dangerous_code=True, handle_parsing_errors=True, agent_type=AgentType.OPENAI_FUNCTIONS) |
|
|
|
def query_agent(agent, query): |
|
""" |
|
Query an agent and return the response as a string. |
|
|
|
Args: |
|
agent: The agent to query. |
|
query: The query to ask the agent. |
|
|
|
Returns: |
|
The response from the agent as a string. |
|
""" |
|
|
|
prompt = ( |
|
""" |
|
For the following query, if it requires drawing a table, reply as follows: |
|
{"table": {"columns": ["column1", "column2", ...], "data": [[value1, value2, ...], [value1, value2, ...], ...]}} |
|
|
|
If the query requires creating a bar chart, reply as follows: |
|
{"bar": {"columns": ["A", "B", "C", ...], "data": [25, 24, 10, ...]}} |
|
|
|
If the query requires creating a line chart, reply as follows: |
|
{"line": {"columns": ["A", "B", "C", ...], "data": [25, 24, 10, ...]}} |
|
|
|
There can only be two types of chart, "bar" and "line". |
|
|
|
If it is just asking a question that requires neither, reply as follows: |
|
{"answer": "answer"} |
|
Example: |
|
{"answer": "The title with the highest rating is 'Gilead'"} |
|
|
|
If you do not know the answer, reply as follows: |
|
{"answer": "I do not know."} |
|
|
|
Return all output as a string. |
|
|
|
All strings in "columns" list and data list, should be in double quotes, |
|
|
|
For example: {"columns": ["title", "ratings_count"], "data": [["Gilead", 361], ["Spider's Web", 5164]]} |
|
|
|
Lets think step by step. |
|
|
|
Below is the query. |
|
Query: |
|
""" |
|
+ query |
|
) |
|
|
|
|
|
response = agent.invoke(prompt) |
|
|
|
|
|
return response.__str__() |
|
|
|
def decode_response(response: str) -> dict: |
|
"""This function converts the string response from the model to a dictionary object. |
|
|
|
Args: |
|
response (str): response from the model |
|
|
|
Returns: |
|
dict: dictionary with response data |
|
""" |
|
return json.loads("[" + response + "]") |
|
|
|
def write_response(response_dict: dict): |
|
""" |
|
Write a response from an agent to a Streamlit app. |
|
|
|
Args: |
|
response_dict: The response from the agent. |
|
|
|
Returns: |
|
None. |
|
""" |
|
|
|
|
|
return response_dict["answer"] |
|
|
|
@cl.set_chat_profiles |
|
async def chat_profile(): |
|
return [ |
|
cl.ChatProfile(name="Traitement des données d'enquête : «Expé CFA : questionnaire auprès des professionnels de la branche de l'agencement»",markdown_description="Vidéo exploratoire autour de l'événement",icon="/public/logo-ofipe.png",), |
|
] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@cl.on_chat_start |
|
async def on_chat_start(): |
|
await cl.Message(f"> SURVEYIA").send() |
|
elements = [] |
|
textElements = [] |
|
df = pd.read_csv('./public/survey.csv') |
|
df_taille = df.groupby('taille_entreprise').size().reset_index(name='obs') |
|
fig_taille = px.pie(df_taille, names='taille_entreprise', values='obs', color='obs', title="La taille des entreprises ayant répondu", labels={'obs':'nombre'}, color_discrete_sequence=px.colors.qualitative.Safe).update_traces(textposition='inside', textinfo='percent+label').update_layout(font=dict(size=9,color="RebeccaPurple")) |
|
elements.append(cl.Plotly(name="chart_taille", figure=fig_taille, display="inline", size="small")) |
|
|
|
textElements.append(cl.Text(name="text_taille", content=df_taille.style, display="side")) |
|
await cl.Message(content="Tableau des données de La \"taille des entreprises ayant répondu\"", elements=textElements,).send() |
|
|
|
|
|
df_temps = df.groupby('temps_active_domaine_agencement').size().reset_index(name='obs') |
|
fig_temps = px.pie(df_temps, names='temps_active_domaine_agencement', values='obs', color='obs', title="L’engagement dans le domaine de l’agencement", labels={'obs':'nombre'}, color_discrete_sequence=px.colors.qualitative.Safe).update_traces(textposition='inside', textinfo='percent+label').update_layout(font=dict(size=9,color="RebeccaPurple")) |
|
elements.append(cl.Plotly(name="chart_temps", figure=fig_temps, display="inline", size="small")) |
|
|
|
df_temps_entreprise = df.groupby(['temps_active_domaine_agencement', 'taille_entreprise']).size().reset_index(name='obs') |
|
fig_temps_entreprise = px.bar(df_temps_entreprise, x='temps_active_domaine_agencement', y='obs', color='taille_entreprise', title="L’engagement dans le domaine de l’agencement par taille d'entreprise", labels={'obs':'nombre'}, color_discrete_sequence=px.colors.qualitative.Safe, text_auto=True).update_layout(font=dict(size=9,color="RebeccaPurple")) |
|
elements.append(cl.Plotly(name="chart_temps_entreprise", figure=fig_temps_entreprise, display="inline", size="small")) |
|
|
|
df_nb_charge = df.groupby('nombre_chargés_affaires').size().reset_index(name='obs') |
|
fig_nb_charge = px.pie(df_nb_charge, names='nombre_chargés_affaires', values='obs', color='obs', title="Le nombre de chargé.e d’affaires en agencement", labels={'obs':'nombre'}, color_discrete_sequence=px.colors.qualitative.Safe).update_traces(textposition='inside', textinfo='percent+label').update_layout(font=dict(size=9,color="RebeccaPurple")) |
|
elements.append(cl.Plotly(name="chart_nb_charge", figure=fig_nb_charge, display="inline", size="small")) |
|
|
|
df_nb_charge_entreprise = df.groupby(['nombre_chargés_affaires', 'taille_entreprise']).size().reset_index(name='obs') |
|
fig_nb_charge_entreprise = px.bar(df_nb_charge_entreprise, x='nombre_chargés_affaires', y='obs', color='taille_entreprise', title="Le nombre de chargé.e d’affaires en agencement par taille d'entreprise", labels={'obs':'nombre'}, color_discrete_sequence=px.colors.qualitative.Safe, text_auto=True).update_layout(font=dict(size=9,color="RebeccaPurple")) |
|
elements.append(cl.Plotly(name="chart_nb_charge_entreprise", figure=fig_nb_charge_entreprise, display="inline", size="small")) |
|
|
|
df_nb_charge_engagement = df.groupby(['nombre_chargés_affaires', 'temps_active_domaine_agencement']).size().reset_index(name='obs') |
|
fig_nb_charge_entreprise = px.bar(df_nb_charge_engagement, x='nombre_chargés_affaires', y='obs', color='temps_active_domaine_agencement', title="Le nombre de chargé.e d’affaires en agencement par année d'engagement", labels={'obs':'nombre'}, color_discrete_sequence=px.colors.qualitative.Safe, text_auto=True).update_layout(font=dict(size=9,color="RebeccaPurple")) |
|
elements.append(cl.Plotly(name="chart_nb_charge_entreprise", figure=fig_nb_charge_entreprise, display="inline", size="small")) |
|
|
|
df_statut = df.groupby('fonction_Statut_repondant').size().reset_index(name='obs') |
|
fig_statut = px.bar(df_statut, x='obs', y='fonction_Statut_repondant', orientation='h', color='obs', title="Le profil des répondants", labels={'obs':'nombre'}, color_discrete_sequence=px.colors.qualitative.Safe, text_auto=True).update_layout(font=dict(size=9,color="RebeccaPurple")) |
|
elements.append(cl.Plotly(name="chart_statut", figure=fig_statut, display="inline", size="small")) |
|
|
|
df1 = df |
|
df1['principaux_interlocuteurs'] = df1['principaux_interlocuteurs'].str.split(';') |
|
df1 = df1.explode('principaux_interlocuteurs') |
|
df_interlocuteur = df1.groupby('principaux_interlocuteurs').size().reset_index(name='obs') |
|
fig_interlocuteur = px.bar(df_interlocuteur, x='obs', y='principaux_interlocuteurs', orientation='h', color='obs', title="Les principaux interlocuteurs du CAA", labels={'obs':'nombre'}, color_discrete_sequence=px.colors.qualitative.Safe, text_auto=True).update_layout(font=dict(size=9,color="RebeccaPurple")) |
|
elements.append(cl.Plotly(name="chart_interlocuteur", figure=fig_interlocuteur, display="inline", size="small")) |
|
|
|
df_interlocuteur_entreprise = df1.groupby(['principaux_interlocuteurs', 'taille_entreprise']).size().reset_index(name='obs') |
|
fig_interlocuteur_entreprise = px.bar(df_interlocuteur_entreprise, x='obs', y='principaux_interlocuteurs', orientation='h', color='taille_entreprise', title="Les principaux interlocuteurs du CAA par taille d'entreprise", labels={'obs':'nombre'}, color_discrete_sequence=px.colors.qualitative.Safe, text_auto=True).update_layout(font=dict(size=9,color="RebeccaPurple")) |
|
elements.append(cl.Plotly(name="chart_interlocuteur_entreprise", figure=fig_interlocuteur_entreprise, display="inline", size="small")) |
|
|
|
df_interlocuteur_nb_charge = df1.groupby(['principaux_interlocuteurs', 'nombre_chargés_affaires']).size().reset_index(name='obs') |
|
fig_interlocuteur_nb_charge = px.bar(df_interlocuteur_nb_charge, x='obs', y='principaux_interlocuteurs', orientation='h', color='nombre_chargés_affaires', title="Les principaux interlocuteurs du CAA par nombre chargé.e d'affaires", labels={'obs':'nombre'}, color_discrete_sequence=px.colors.qualitative.Safe, text_auto=True).update_layout(font=dict(size=9,color="RebeccaPurple")) |
|
elements.append(cl.Plotly(name="chart_interlocuteur_nb_charge", figure=fig_interlocuteur_nb_charge, display="inline", size="small")) |
|
|
|
df2 = df |
|
df2['principales_compétences_attendues'] = df2['principales_compétences_attendues'].str.split(';') |
|
df2 = df2.explode('principales_compétences_attendues') |
|
df_competences = df2.groupby('principales_compétences_attendues').size().reset_index(name='obs') |
|
fig_competences = px.bar(df_competences, x='obs', y='principales_compétences_attendues', orientation='h', color='obs', title="Les principales compétences attendues", labels={'obs':'nombre'}, color_discrete_sequence=px.colors.qualitative.Safe, text_auto=True).update_layout(font=dict(size=9,color="RebeccaPurple")) |
|
elements.append(cl.Plotly(name="chart_competences", figure=fig_competences, display="inline", size="small")) |
|
|
|
df_competences_entreprise = df2.groupby(['principales_compétences_attendues', 'taille_entreprise']).size().reset_index(name='obs') |
|
fig_competences_entreprise = px.bar(df_competences_entreprise, x='obs', y='principales_compétences_attendues', orientation='h', color='taille_entreprise', title="Les principales compétences attendues par taille d'entreprise", labels={'obs':'nombre'}, color_discrete_sequence=px.colors.qualitative.Safe, text_auto=True).update_layout(font=dict(size=9,color="RebeccaPurple")) |
|
elements.append(cl.Plotly(name="chart_competences_entreprise", figure=fig_competences_entreprise, display="inline", size="small")) |
|
|
|
df_competences_nb_charge = df2.groupby(['principales_compétences_attendues', 'nombre_chargés_affaires']).size().reset_index(name='obs') |
|
fig_competences_nb_charge = px.bar(df_competences_nb_charge, x='obs', y='principales_compétences_attendues', orientation='h', color='nombre_chargés_affaires', title="Les principales compétences attendues par nombre chargé.e d'affaires", labels={'obs':'nombre'}, color_discrete_sequence=px.colors.qualitative.Safe, text_auto=True).update_layout(font=dict(size=9,color="RebeccaPurple")) |
|
elements.append(cl.Plotly(name="chart_competences_nb_charge", figure=fig_competences_nb_charge, display="inline", size="small")) |
|
|
|
await cl.Message(content="Datavisualisation de l'enquête des recruteurs des chargé.e.s d'affaires en agencement", elements=elements).send() |
|
|
|
@cl.on_message |
|
async def on_message(message: cl.Message): |
|
await cl.Message(f"> SURVEYIA").send() |
|
agent = create_agent("./public/surveyia.csv") |
|
cb = cl.AsyncLangchainCallbackHandler() |
|
try: |
|
res = await agent.acall("Réponds en langue française à la question suivante : " + message.content, callbacks=[cb]) |
|
await cl.Message(author="COPILOT",content=GoogleTranslator(source='auto', target='fr').translate(res['output'])).send() |
|
except ValueError as e: |
|
res = str(e) |
|
resArray = res.split(":") |
|
ans = '' |
|
if str(res).find('parsing') != -1: |
|
for i in range(2,len(resArray)): |
|
ans += resArray[i] |
|
await cl.Message(author="COPILOT",content=ans.replace("`","")).send() |
|
else: |
|
await cl.Message(author="COPILOT",content="Reformulez votre requête, s'il vous plait 😃").send() |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|