datacipen commited on
Commit
f653f9b
·
verified ·
1 Parent(s): c06d9ce

Update main.py

Browse files
Files changed (1) hide show
  1. main.py +0 -25
main.py CHANGED
@@ -53,29 +53,6 @@ async def Retriever(categorie):
53
  retriever = vectorstore.as_retriever(search_type="similarity_score_threshold", search_kwargs={"score_threshold": .7, "k": 250,"filter": {"title": {"$eq": "videos-table-rondeia"}, "time": {"$gte": 1320}}})
54
  return retriever
55
 
56
- @cl.step(type="tool")
57
- async def OtherRequest(answer):
58
- schema = {
59
- "properties": {
60
- "Questions en relation avec le contexte": {"type": "string"},
61
- },
62
- "required": ["Questions en relation avec le contexte"],
63
- }
64
- llm = await LLMistral()
65
- chainExtraction = create_extraction_chain(schema, llm)
66
- dataframe = chainExtraction.invoke(GoogleTranslator(source='auto', target='fr').translate(answer))
67
- actRequest = dataframe['text']
68
- df_actRequest = pd.DataFrame(actRequest)
69
- allRequest = pd.DataFrame(df_actRequest['Questions en relation avec le contexte'])
70
- allRequest.drop_duplicates(keep = 'first', inplace=True)
71
- allRequestArray = allRequest.values.tolist()
72
- RequestArray = []
73
- for act in allRequestArray:
74
- RequestArray.append(cl.Starter(label=act[0], message=act[0], icon="/public/request-theme.svg",),)
75
- print(RequestArray)
76
- await cl.Message(content=RequestArray).send()
77
-
78
-
79
  @cl.step(type="embedding")
80
  async def Search(input, categorie):
81
  vectorstore = await VectorDatabase(categorie)
@@ -191,8 +168,6 @@ async def on_message(message: cl.Message):
191
 
192
  await cl.Message(content=GoogleTranslator(source='auto', target='fr').translate(answer)).send()
193
 
194
- await OtherRequest(answer)
195
-
196
  search = await Search(message.content, "videosTC")
197
 
198
  sources = [
 
53
  retriever = vectorstore.as_retriever(search_type="similarity_score_threshold", search_kwargs={"score_threshold": .7, "k": 250,"filter": {"title": {"$eq": "videos-table-rondeia"}, "time": {"$gte": 1320}}})
54
  return retriever
55
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
56
  @cl.step(type="embedding")
57
  async def Search(input, categorie):
58
  vectorstore = await VectorDatabase(categorie)
 
168
 
169
  await cl.Message(content=GoogleTranslator(source='auto', target='fr').translate(answer)).send()
170
 
 
 
171
  search = await Search(message.content, "videosTC")
172
 
173
  sources = [