dashskills / app.py
datacipen's picture
Update app.py
0775493 verified
import os
import datetime
import requests
import textwrap
from offres_emploi import Api
from offres_emploi.utils import dt_to_str_iso
from dash import Dash, html, dcc, callback, Output, Input, dash_table, State, _dash_renderer, clientside_callback
import dash_bootstrap_components as dbc
import plotly.express as px
import plotly.graph_objects as go
import dash_mantine_components as dmc
from dash_iconify import DashIconify
import pandas as pd
from dotenv import load_dotenv
_dash_renderer._set_react_version("18.2.0")
import plotly.io as pio
from langchain_community.llms import HuggingFaceEndpoint
from langchain_core.prompts import ChatPromptTemplate, PromptTemplate
from langchain.schema.output_parser import StrOutputParser
from pinecone import Pinecone
from bs4 import BeautifulSoup
from flask import Flask
server = Flask(__name__)
# external JavaScript files
external_scripts = [
'https://datacipen-eventia.hf.space/copilot/index.js'
]
# Create a customized version of the plotly_dark theme with a modified background color
custom_plotly_dark_theme = {
"layout": {
"paper_bgcolor": "#1E1E1E", # Update the paper background color
"plot_bgcolor": "#1E1E1E", # Update the plot background color
"font": {
"color": "#FFFFFF" # Update the font color
},
"xaxis": {
"gridcolor": "#333333", # Update the x-axis grid color
"zerolinecolor": "#666666" # Update the x-axis zero line color
},
"yaxis": {
"gridcolor": "#333333", # Update the y-axis grid color
"zerolinecolor": "#666666" # Update the y-axis zero line color
}
}
}
# Apply the customized theme to your Plotly figures
pio.templates["custom_plotly_dark"] = custom_plotly_dark_theme
pio.templates.default = "custom_plotly_dark"
load_dotenv()
def removeTags(all):
for data in all(['style', 'script']):
data.decompose()
return ''.join(all.stripped_strings)
def htmlToDataframe(htmlTable):
data = []
list_header = []
soup = BeautifulSoup(htmlTable,'html.parser')
header = soup.find_all("table")[0].find("tr")
for items in header:
try:
list_header.append(items.get_text())
except:
continue
HTML_data = soup.find_all("table")[0].find_all("tr")[1:]
for element in HTML_data:
sub_data = []
for sub_element in element:
try:
sub_data.append(sub_element.get_text())
except:
continue
data.append(sub_data)
dataFrame = pd.DataFrame(data = data, columns = list_header)
return dataFrame
def getSavoirFaireFromHTMLMetier(url):
response = requests.get(url)
soup = BeautifulSoup(response.text, "html.parser")
allSavoirFaire = soup.select('ul[data-cy="liste-savoir-faire-metier"] > li')
if len(allSavoirFaire) != 0:
allSF = "<table><tr><td>Savoir-faire</td><td>Libelle</td><td>Type</td><td>Categorie</td></tr>"
for i in range(0,len(allSavoirFaire)):
blockSavoirFaire = allSavoirFaire[i]
try:
soupSavoirFaire = BeautifulSoup(str(blockSavoirFaire), "html.parser")
titleSavoirFaire = soupSavoirFaire.select('h4.fm-block-form-title')
descriptSavoirFaire = soupSavoirFaire.select('div.fm-block-form-collapse-content')
if removeTags(titleSavoirFaire[0]) != None:
for j in range(0,len(descriptSavoirFaire)):
ssblockSavoirFaire = descriptSavoirFaire[j]
soupssSavoirFaire = BeautifulSoup(str(ssblockSavoirFaire), "html.parser")
sstitleSavoirFaire = soupssSavoirFaire.select('h5.fm-block-form-subtitle')
listSavoirFaire = soupssSavoirFaire.select('ul.list-unstyled > li')
if len(listSavoirFaire) != 0:
for k in range(0,len(listSavoirFaire)):
blockListSavoirFaire = removeTags(listSavoirFaire[k])
allSF += "<tr><td>" + removeTags(titleSavoirFaire[0]) + "</td><td>" + blockListSavoirFaire + "</td><td>" + removeTags(sstitleSavoirFaire[0]) + "</td><td>1</td></tr>"
except:
print("Pas de Savoir-Faire!")
allSF += "</table>"
return allSF
def getSavoirFromHTMLMetier(url):
response = requests.get(url)
soup = BeautifulSoup(response.text, "html.parser")
allSavoirFaire = soup.select('ul[data-cy="liste-savoir-metier"] > li')
if len(allSavoirFaire) != 0:
allSF = "<table><tr><td>Savoir-faire</td><td>Libelle</td><td>Categorie</td></tr>"
for i in range(0,len(allSavoirFaire)):
blockSavoirFaire = allSavoirFaire[i]
try:
soupSavoirFaire = BeautifulSoup(str(blockSavoirFaire), "html.parser")
titleSavoirFaire = soupSavoirFaire.select('h4.fm-block-form-title')
descriptSavoirFaire = soupSavoirFaire.select('div.fm-block-form-collapse-content')
if removeTags(titleSavoirFaire[0]) != None:
for j in range(0,len(descriptSavoirFaire)):
ssblockSavoirFaire = descriptSavoirFaire[j]
soupssSavoirFaire = BeautifulSoup(str(ssblockSavoirFaire), "html.parser")
listSavoirFaire = soupssSavoirFaire.select('ul.list-unstyled > li')
if len(listSavoirFaire) != 0:
for k in range(0,len(listSavoirFaire)):
blockListSavoirFaire = removeTags(listSavoirFaire[k])
allSF += "<tr><td>" + removeTags(titleSavoirFaire[0]) + "</td><td>" + blockListSavoirFaire + "</td><td>1</td></tr>"
except:
print("Pas de Savoir-Faire!")
allSF += "</table>"
return allSF
def getContextFromHTMLMetier(url):
response = requests.get(url)
soup = BeautifulSoup(response.text, "html.parser")
allContext = soup.select('div[data-cy="liste-contextes"] > div.fm-context')
count = 0
if len(allContext) != 0:
allSF = "<table><tr><td>Savoir-faire</td><td>Libelle</td><td>Categorie</td></tr>"
for i in range(0,len(allContext)):
count = count + 1
blockContext = allContext[i]
try:
soupContext = BeautifulSoup(str(blockContext), "html.parser")
titleSavoirFaire = soupContext.select('h3.fm-context-title')
descriptSavoirFaire = soupContext.select('ul > li')
if removeTags(titleSavoirFaire[0]) != None:
for j in range(0,len(descriptSavoirFaire)):
ssblockSavoirFaire = descriptSavoirFaire[j]
if len(ssblockSavoirFaire) != 0:
allSF += "<tr><td>" + removeTags(titleSavoirFaire[0]) + "</td><td>" + removeTags(ssblockSavoirFaire) + "</td><td>1</td></tr>"
except:
print("Pas de Savoir-Faire!")
allSF += "</table>"
return allSF
def datavisualisation_skills_context(df, template, paper_bgcolor, plot_bgcolor, title_template, codeRome):
train = df
array_df = list(df.columns)
if any(x == "Type" for x in array_df):
df1 = train.groupby(['Savoir-faire', 'Type'])['Categorie'].count().reset_index()
df1.columns = ['source', 'target', 'value']
df2 = train.groupby(['Type', 'Libelle'])['Categorie'].count().reset_index()
df2.columns = ['source', 'target', 'value']
all_links = pd.concat([df1, df2], axis=0)
else:
df1 = train.groupby(['Savoir-faire', 'Libelle'])['Categorie'].count().reset_index()
df1.columns = ['source', 'target', 'value']
all_links = df1
unique_source_target = list(pd.unique(all_links[['source', 'target']].values.ravel('K')))
mapping_dict = {k: v for v, k in enumerate(unique_source_target)}
all_links['source'] = all_links['source'].map(mapping_dict)
all_links['target'] = all_links['target'].map(mapping_dict)
links_dict = all_links.to_dict(orient='list')
#Sankey Diagram Code
colors = [
"blue","blueviolet","brown","burlywood","cadetblue",
"chartreuse","chocolate","coral","cornflowerblue",
"cornsilk","crimson","cyan","darkblue","darkcyan",
"darkgoldenrod","darkgray","darkgrey","darkgreen",
"darkkhaki","darkmagenta","darkolivegreen","darkorange",
"darkorchid","darkred","darksalmon","darkseagreen",
"darkslateblue","darkslategray","darkslategrey",
"darkturquoise","darkviolet","deeppink","deepskyblue",
"dimgray","dimgrey","dodgerblue","firebrick",
"floralwhite","forestgreen","fuchsia","gainsboro",
"ghostwhite","gold","goldenrod","gray","grey","green",
"greenyellow","honeydew","hotpink","indianred","indigo",
"ivory","khaki","lavender","lavenderblush","lawngreen",
"lemonchiffon","lightblue","lightcoral","lightcyan",
"lightgoldenrodyellow","lightgray","lightgrey",
"lightgreen","lightpink","lightsalmon","lightseagreen",
"lightskyblue","lightslategray","lightslategrey",
"lightsteelblue","lightyellow", "lime","limegreen",
"linen","magenta","maroon","mediumaquamarine",
"mediumblue","mediumorchid","mediumpurple",
"mediumseagreen","mediumslateblue","mediumspringgreen",
"mediumturquoise","mediumvioletred","midnightblue",
"mintcream","mistyrose","moccasin","navajowhite","navy",
"oldlace","olive","olivedrab","orange","orangered",
"orchid","palegoldenrod","palegreen","paleturquoise",
"palevioletred","papayawhip","peachpuff","peru","pink",
"plum","powderblue","purple","red","rosybrown",
"royalblue","rebeccapurple","saddlebrown","salmon",
"sandybrown","seagreen","seashell","sienna","silver",
"skyblue","slateblue","slategray","slategrey","snow",
"aliceblue","antiquewhite","aqua","aquamarine","azure",
"beige","bisque","black","blanchedalmond"
]
array_label_rome = searchByRome(codeRome)
fig = go.Figure(data=[go.Sankey(
node = dict(
pad = 15,
thickness = 20,
line = dict(color = "black", width = 0.5),
label = unique_source_target,
color = colors
),
link = dict(
source = links_dict["source"],
target = links_dict["target"],
value = links_dict["value"],
color="lightgrey"
))]).update_layout(template=template, paper_bgcolor=paper_bgcolor, plot_bgcolor=plot_bgcolor, title_text=title_template + " du code ROME : " + array_label_rome[0]['label'], font_size=10,width=1000, height=800)
return fig
def datavisualisation_chiffres_cles_emplois(url):
response = requests.get(url)
soup = BeautifulSoup(response.text, "lxml")
alldemandeurs = ''
allsalaires = ''
alldifficultes = ''
allrepartitions = ''
allentreprises = ''
allembauches = soup.select('p.population_category')
allnumembauchesfirst = soup.select('p.population_main-num.data')
allnumembauches = removeTags(allnumembauchesfirst[0]).split('\xa0')
allnumembauches = ''.join(allnumembauches)
allnumoffres = removeTags(allnumembauchesfirst[1]).split('\xa0')
allnumoffres = ''.join(allnumoffres)
alldetailembauches = soup.select('p.hiring_text.ng-star-inserted')
allnumevolutionembauches = soup.select('p.main.ng-star-inserted')
alldetailevolutionembauches = soup.select('p.population_bubble-title')
alldemandeurs = "<table><tr><td>Indicateur</td><td>Valeur</td></tr><tr><td>" + removeTags(allembauches[0]) + " (" + removeTags(alldetailembauches[0]) + ");"
if len(alldetailevolutionembauches) >= 1 and len(allnumevolutionembauches) >= 1:
alldemandeurs += "\nÉvolution demandeurs d'emploi (" + removeTags(alldetailevolutionembauches[0]) + ": " + removeTags(allnumevolutionembauches[0]) + ")</td>"
else:
alldemandeurs += "</td>"
alldemandeurs += "<td>" + allnumembauches + "</td></tr>"
alldemandeurs += "<tr><td>" + removeTags(allembauches[1]) + " (" + removeTags(alldetailembauches[1]) + ");"
if len(alldetailevolutionembauches) >= 2 and len(allnumevolutionembauches) >= 2:
alldemandeurs += "\nÉvolution offres d'emploi (" + removeTags(alldetailevolutionembauches[1]) + ": " + removeTags(allnumevolutionembauches[1]) + ")</td>"
else:
alldemandeurs += "</td>"
alldemandeurs += "<td>" + allnumoffres + "</td></tr>"
alldemandeurs += "</table>"
allFAP = soup.select('tr.sectorTable__line.ng-star-inserted')
allcategorie = soup.select('td.sectorTable__cell')
alltypesalaires = soup.select('th.sectorTable__cell')
allFAPsalaires = soup.select('p.sectorTable__cellValue')
if len(allFAPsalaires) >= 3:
allsalaires = "<table><tr><td>categorie</td><td>emploi</td><td>salaire</td></tr>"
allsalaires += "<tr><td>" + removeTags(alltypesalaires[1]) + "</td><td>" + removeTags(allcategorie[0]) + "</td><td>" + removeTags(allFAPsalaires[0]).replace('\xa0','').replace(' ','').replace('€','') + "</td></tr>"
allsalaires += "<tr><td>" + removeTags(alltypesalaires[2]) + "</td><td>" + removeTags(allcategorie[0]) + "</td><td>" + removeTags(allFAPsalaires[1]).replace('\xa0','').replace(' ','').replace('€','') + "</td></tr>"
allsalaires += "<tr><td>" + removeTags(alltypesalaires[3]) + "</td><td>" + removeTags(allcategorie[0]) + "</td><td>" + removeTags(allFAPsalaires[2]).replace('\xa0','').replace(' ','').replace('€','') + "</td></tr>"
if len(allFAP) >= 2 and len(allFAPsalaires) == 6:
allsalaires += "<tr><td>" + removeTags(alltypesalaires[1]) + "</td><td>" + removeTags(allcategorie[4]) + "</td><td>" + removeTags(allFAPsalaires[3]).replace('\xa0','').replace(' ','').replace('€','') + "</td></tr>"
allsalaires += "<tr><td>" + removeTags(alltypesalaires[2]) + "</td><td>" + removeTags(allcategorie[4]) + "</td><td>" + removeTags(allFAPsalaires[4]).replace('\xa0','').replace(' ','').replace('€','') + "</td></tr>"
allsalaires += "<tr><td>" + removeTags(alltypesalaires[3]) + "</td><td>" + removeTags(allcategorie[4]) + "</td><td>" + removeTags(allFAPsalaires[5]).replace('\xa0','').replace(' ','').replace('€','') + "</td></tr>"
allsalaires += "</table>"
alltypedifficultes = soup.select('.tabs-main-content_persp-col2-bar.ng-star-inserted')
alldifficulte = soup.select('p.horizontal-graph_title')
allpcdifficulte = soup.select('div.horizontal-graph_data')
alldifficultes = "<table><tr><td>Indicateur</td><td>Valeur</td></tr>"
for i in range(0,len(alltypedifficultes)):
alldifficultes += "<tr><td>" + removeTags(alldifficulte[i]) + "</td><td>" + removeTags(allpcdifficulte[i]).replace('Pour le territoire principal FRANCE pour les ' + removeTags(alldifficulte[i]),'').replace('%','') + "</td></tr>"
alldifficultes += "</table>"
alltyperepartitions = soup.select('div.hiring-contract_legende_item.ng-star-inserted')
allrepartition = soup.select('p.hiring-contract_legende_item_label')
allpcrepartition = soup.select('span.hiring-contract_legende_item-first')
allrepartitions = "<table><tr><td>Indicateur</td><td>Valeur</td></tr>"
for i in range(0,len(alltyperepartitions)):
allrepartitions += "<tr><td>" + removeTags(allrepartition[i]).replace('(' + removeTags(allpcrepartition[i]) + ')','') + "</td><td>" + removeTags(allpcrepartition[i]).replace('%','').replace(',','.') + "</td></tr>"
allrepartitions += "</table>"
allentrepriserepartitions = soup.select('div.horizontal-graph_pattern.sm-bubble_wrapper > span')
allentreprise = soup.select('span.sr-only')
allpcentreprise = soup.select('span.data.ng-star-inserted')
allentreprises = "<table><tr><td>Indicateur</td><td>Valeur</td></tr>"
for i in range(0,len(allentrepriserepartitions)):
allentreprises += "<tr><td>" + removeTags(allentrepriserepartitions[i])[0:-4] + "</td><td>" + removeTags(allentrepriserepartitions[i])[-4:].replace('%','').replace(',','.') + "</td></tr>"
allentreprises += "</table>"
return [alldemandeurs, allsalaires, alldifficultes, allrepartitions, allentreprises]
def localisation():
ListCentroids = [
{ "ID": "01", "Longitude": 5.3245259, "Latitude":46.0666003 },
{ "ID": "02", "Longitude": 3.5960246, "Latitude": 49.5519632 },
{ "ID": "03", "Longitude": 3.065278, "Latitude": 46.4002783 },
{ "ID": "04", "Longitude": 6.2237688, "Latitude": 44.1105837 },
{ "ID": "05", "Longitude": 6.2018836, "Latitude": 44.6630487 },
{ "ID": "06", "Longitude": 7.0755745, "Latitude":43.9463082 },
{ "ID": "07", "Longitude": 4.3497308, "Latitude": 44.7626044 },
{ "ID": "08", "Longitude": 4.6234893, "Latitude": 49.6473884 },
{ "ID": "09", "Longitude": 1.6037147, "Latitude": 42.9696091 },
{ "ID": "10", "Longitude": 4.1394954, "Latitude": 48.2963286 },
{ "ID": "11", "Longitude": 2.3140163, "Latitude": 43.1111427 },
{ "ID": "12", "Longitude": 2.7365234, "Latitude": 44.2786323 },
{ "ID": "13", "Longitude": 5.0515492, "Latitude": 43.5539098 },
{ "ID": "14", "Longitude": -0.3930779, "Latitude": 49.1024215 },
{ "ID": "15", "Longitude": 2.6367657, "Latitude": 44.9643217 },
{ "ID": "16", "Longitude": 0.180475, "Latitude": 45.706264 },
{ "ID": "17", "Longitude": -0.7082589, "Latitude": 45.7629699 },
{ "ID": "18", "Longitude": 2.5292424, "Latitude": 47.0926687 },
{ "ID": "19", "Longitude": 1.8841811, "Latitude": 45.3622055 },
{ "ID": "2A", "Longitude": 8.9906834, "Latitude": 41.8619761 },
{ "ID": "2B", "Longitude": 9.275489, "Latitude": 42.372014 },
{ "ID": "21", "Longitude": 4.7870471, "Latitude": 47.4736746 },
{ "ID": "22", "Longitude": -2.9227591, "Latitude": 48.408402 },
{ "ID": "23", "Longitude": 2.0265508, "Latitude": 46.0837382 },
{ "ID": "24", "Longitude": 0.7140145, "Latitude": 45.1489678 },
{ "ID": "25", "Longitude": 6.3991355, "Latitude": 47.1879451 },
{ "ID": "26", "Longitude": 5.1717552, "Latitude": 44.8055408 },
{ "ID": "27", "Longitude": 0.9488116, "Latitude": 49.1460288 },
{ "ID": "28", "Longitude": 1.2793491, "Latitude": 48.3330017 },
{ "ID": "29", "Longitude": -4.1577074, "Latitude": 48.2869945 },
{ "ID": "30", "Longitude": 4.2650329, "Latitude": 43.9636468 },
{ "ID": "31", "Longitude": 1.2728958, "Latitude": 43.3671081 },
{ "ID": "32", "Longitude": 0.4220039, "Latitude": 43.657141 },
{ "ID": "33", "Longitude": -0.5760716, "Latitude": 44.8406068 },
{ "ID": "34", "Longitude": 3.4197556, "Latitude": 43.62585 },
{ "ID": "35", "Longitude": -1.6443812, "Latitude": 48.1801254 },
{ "ID": "36", "Longitude": 1.6509938, "Latitude": 46.7964222 },
{ "ID": "37", "Longitude": 0.7085619, "Latitude": 47.2802601 },
{ "ID": "38", "Longitude": 5.6230772, "Latitude": 45.259805 },
{ "ID": "39", "Longitude": 5.612871, "Latitude": 46.7398138 },
{ "ID": "40", "Longitude": -0.8771738, "Latitude": 44.0161251 },
{ "ID": "41", "Longitude": 1.3989178, "Latitude": 47.5866519 },
{ "ID": "42", "Longitude": 4.2262355, "Latitude": 45.7451186 },
{ "ID": "43", "Longitude": 3.8118151, "Latitude": 45.1473029 },
{ "ID": "44", "Longitude": -1.7642949, "Latitude": 47.4616509 },
{ "ID": "45", "Longitude": 2.2372695, "Latitude": 47.8631395 },
{ "ID": "46", "Longitude": 1.5732157, "Latitude": 44.6529284 },
{ "ID": "47", "Longitude": 0.4788052, "Latitude": 44.4027215 },
{ "ID": "48", "Longitude": 3.4991239, "Latitude": 44.5191573 },
{ "ID": "49", "Longitude": -0.5136056, "Latitude": 47.3945201 },
{ "ID": "50", "Longitude": -1.3203134, "Latitude": 49.0162072 },
{ "ID": "51", "Longitude": 4.2966555, "Latitude": 48.9479636 },
{ "ID": "52", "Longitude": 5.1325796, "Latitude": 48.1077196 },
{ "ID": "53", "Longitude": -0.7073921, "Latitude": 48.1225795 },
{ "ID": "54", "Longitude": 6.144792, "Latitude": 48.7995163 },
{ "ID": "55", "Longitude": 5.2888292, "Latitude": 49.0074545 },
{ "ID": "56", "Longitude": -2.8746938, "Latitude": 47.9239486 },
{ "ID": "57", "Longitude": 6.5610683, "Latitude": 49.0399233 },
{ "ID": "58", "Longitude": 3.5544332, "Latitude": 47.1122301 },
{ "ID": "59", "Longitude": 3.2466616, "Latitude": 50.4765414 },
{ "ID": "60", "Longitude": 2.4161734, "Latitude": 49.3852913 },
{ "ID": "61", "Longitude": 0.2248368, "Latitude": 48.5558919 },
{ "ID": "62", "Longitude": 2.2555152, "Latitude": 50.4646795 },
{ "ID": "63", "Longitude": 3.1322144, "Latitude": 45.7471805 },
{ "ID": "64", "Longitude": -0.793633, "Latitude": 43.3390984 },
{ "ID": "65", "Longitude": 0.1478724, "Latitude": 43.0526238 },
{ "ID": "66", "Longitude": 2.5239855, "Latitude": 42.5825094 },
{ "ID": "67", "Longitude": 7.5962225, "Latitude": 48.662515 },
{ "ID": "68", "Longitude": 7.2656284, "Latitude": 47.8586205 },
{ "ID": "69", "Longitude": 4.6859896, "Latitude": 45.8714754 },
{ "ID": "70", "Longitude": 6.1388571, "Latitude": 47.5904191 },
{ "ID": "71", "Longitude": 4.6394021, "Latitude": 46.5951234 },
{ "ID": "72", "Longitude": 0.1947322, "Latitude": 48.0041421 },
{ "ID": "73", "Longitude": 6.4662232, "Latitude": 45.4956055 },
{ "ID": "74", "Longitude": 6.3609606, "Latitude": 46.1045902 },
{ "ID": "75", "Longitude": 2.3416082, "Latitude": 48.8626759 },
{ "ID": "76", "Longitude": 1.025579, "Latitude": 49.6862911 },
{ "ID": "77", "Longitude": 2.8977309, "Latitude": 48.5957831 },
{ "ID": "78", "Longitude": 1.8080138, "Latitude": 48.7831982 },
{ "ID": "79", "Longitude": -0.3159014, "Latitude": 46.5490257 },
{ "ID": "80", "Longitude": 2.3380595, "Latitude": 49.9783317 },
{ "ID": "81", "Longitude": 2.2072751, "Latitude": 43.8524305 },
{ "ID": "82", "Longitude": 1.2649374, "Latitude": 44.1254902 },
{ "ID": "83", "Longitude": 6.1486127, "Latitude": 43.5007903 },
{ "ID": "84", "Longitude": 5.065418, "Latitude": 44.0001599 },
{ "ID": "85", "Longitude": -1.3956692, "Latitude": 46.5929102 },
{ "ID": "86", "Longitude": 0.4953679, "Latitude": 46.5719095 },
{ "ID": "87", "Longitude": 1.2500647, "Latitude": 45.9018644 },
{ "ID": "88", "Longitude": 6.349702, "Latitude": 48.1770451 },
{ "ID": "89", "Longitude": 3.5634078, "Latitude": 47.8474664 },
{ "ID": "90", "Longitude": 6.9498114, "Latitude": 47.6184394 },
{ "ID": "91", "Longitude": 2.2714555, "Latitude": 48.5203114 },
{ "ID": "92", "Longitude": 2.2407148, "Latitude": 48.835321 },
{ "ID": "93", "Longitude": 2.4811577, "Latitude": 48.9008719 },
{ "ID": "94", "Longitude": 2.4549766, "Latitude": 48.7832368 },
{ "ID": "95", "Longitude": 2.1802056, "Latitude": 49.076488 },
{ "ID": "974", "Longitude": 55.536384, "Latitude": -21.115141 },
{ "ID": "973", "Longitude": -53.125782, "Latitude": 3.933889 },
{ "ID": "972", "Longitude": -61.024174, "Latitude": 14.641528 },
{ "ID": "971", "Longitude": -61.551, "Latitude": 16.265 }
]
return ListCentroids
def vectorDatabase_connexion():
pc = Pinecone(api_key=os.environ['PINECONE_API_KEY'])
index_name = "all-skills"
index = pc.Index(index_name)
return index
def searchByRome(codeRome):
index = vectorDatabase_connexion()
allRome = []
if codeRome:
all_docs = index.query(
top_k=1500,
vector= [0] * 768, # embedding dimension
namespace='',
filter={"categorie": {"$eq": "rome"},"rome": {"$eq": codeRome}},
include_metadata=True
)
else:
all_docs = index.query(
top_k=1500,
vector= [0] * 768, # embedding dimension
namespace='',
filter={"categorie": {"$eq": "rome"}},
include_metadata=True
)
for refRome in all_docs['matches']:
allRome.append({"value": refRome['metadata']['rome'], "label": refRome['metadata']['rome'] + " - " + refRome['metadata']['libelle_rome']})
return sorted(allRome, key=lambda element:element["value"])
theme_toggle = dmc.Tooltip(
dmc.ActionIcon(
[
dmc.Paper(DashIconify(icon="radix-icons:sun", width=25), darkHidden=True),
dmc.Paper(DashIconify(icon="radix-icons:moon", width=25), lightHidden=True),
],
variant="transparent",
color="yellow",
id="color-scheme-toggle",
size="lg",
ms="auto",
),
label="Changez de thème",
position="left",
withArrow=True,
arrowSize=6,
)
styleRefresh = {
"color": "lightgrey",
"textDecoration" : "none"
}
styleTitle = {
"textAlign": "center"
}
styleUSERIA = {
"textAlign": "right",
"marginBottom" : "5px"
}
styleSUBMITIA = {
"marginLeft":"auto",
"marginRight":"auto",
"marginTop": "5px",
"marginBottom" : "5px"
}
styleSYSIA = {
"marginTop":"10px",
"marginBottom":"120px",
}
styleTopvar = {
"display": "none"
}
styleToggle = {
"marginTop":"25px",
"textAlign": "right",
}
styleIcon = {
"marginTop":"10px",
}
styleSubmitBox = {
"position":"fixed",
"width": "100%",
"top": "calc(100vh - 100px)",
"right": "0"
}
#datadefault = [
# {"value": "K2105", "label": "K2105"},
# {"value": "L1101", "label": "L1101"},
# {"value": "L1202", "label": "L1202"},
# {"value": "L1507", "label": "L1507"},
# {"value": "L1508", "label": "L1508"},
# {"value": "L1509", "label": "L1509"},
#]
def custom_error_handler(err):
# This function defines what we want to happen when an exception occurs
# For now, we just print the exception to the terminal with additional text
print(f"The app raised the following exception: {err}")
def textbox(text, box="AI", name="Philippe"):
text = text.replace(f"{name}:", "").replace("You:", "")
#text = textile.textile(text)
style = {
"max-width": "60%",
"width": "max-content",
"padding": "5px 10px",
"border-radius": 25,
"margin-bottom": 20,
}
if box == "user":
style["margin-left"] = "auto"
style["margin-right"] = 0
#return dbc.Card(text, style=style, body=True, color="primary", inverse=True)
return html.Div(dmc.Button(text, variant="gradient", gradient={"from": "grape", "to": "pink", "deg": 35}), style=styleUSERIA)
elif box == "AI":
style["margin-left"] = 0
style["margin-right"] = "auto"
thumbnail = html.Img(
src=app.get_asset_url("sparkles.gif"),
style={
"border-radius": 50,
"height": 36,
"margin-right": 5,
"float": "left",
},
)
#textbox = dbc.Card(text, style=style, body=True, color="light", inverse=False)
#textbox = dmc.Blockquote(text, style=styleSYSIA)
textbox = dmc.Card(children=[dmc.Text(text,size="sm",c="dimmed")],withBorder=False,w="100%", style=styleSYSIA)
return html.Div([thumbnail, textbox])
else:
raise ValueError("Incorrect option for `box`.")
#description = """
#Philippe is the principal architect at a condo-development firm in Paris. He lives with his girlfriend of five years in a 2-bedroom condo, with a small dog named Coco. Since the pandemic, his firm has seen a significant drop in condo requests. As such, he’s been spending less time designing and more time on cooking, his favorite hobby. He loves to cook international foods, venturing beyond French cuisine. But, he is eager to get back to architecture and combine his hobby with his occupation. That’s why he’s looking to create a new design for the kitchens in the company’s current inventory. Can you give him advice on how to do that?
#"""
# Authentication
#openai.api_key = os.getenv("OPENAI_KEY")
# Define Layout
conversation = html.Div(
html.Div(id="display-conversation"),
style={
"overflow-y": "auto",
"display": "flex",
"height": "calc(100vh - 100px)",
"flex-direction": "column-reverse",
},
)
controls = dbc.InputGroup(
children=[
dmc.TextInput(id="user-input", placeholder="Ecrire votre requête...", w="400", style=styleSUBMITIA),
dbc.InputGroupAddon(dmc.Button(leftSection=DashIconify("Envoyer", icon="tabler:send", width=20), id="submit"), addon_type="append", style=styleTitle),
#dbc.Input(id="user-input", placeholder="Ecrire votre requête...", type="text"),
#dbc.InputGroupAddon(dbc.Button("Submit", id="submit"), addon_type="append"),
],style=styleSubmitBox
)
class CustomDash(Dash):
def interpolate_index(self, **kwargs):
# Inspect the arguments by printing them
return '''
<!DOCTYPE html>
<html>
<head>
<title>Dashboard des compétences</title>
</head>
<body>
<div id="custom-topbar"></div>
{app_entry}
{config}
{scripts}
{renderer}
<div id="custom-footer"></div>
</body>
</html>
'''.format(
app_entry=kwargs['app_entry'],
config=kwargs['config'],
scripts=kwargs['scripts'],
renderer=kwargs['renderer'])
#app = Dash(__name__, external_scripts=external_scripts, external_stylesheets=dmc.styles.ALL, on_error=custom_error_handler)
app = CustomDash(__name__, server=server, external_scripts=external_scripts, external_stylesheets=dmc.styles.ALL, on_error=custom_error_handler)
def connexion_France_Travail():
client = Api(client_id=os.getenv('POLE_EMPLOI_CLIENT_ID'),
client_secret=os.getenv('POLE_EMPLOI_CLIENT_SECRET'))
return client
def API_France_Travail(romeListArray):
client = connexion_France_Travail()
todayDate = datetime.datetime.today()
month, year = (todayDate.month-1, todayDate.year) if todayDate.month != 1 else (12, todayDate.year-1)
start_dt = todayDate.replace(day=1, month=month, year=year)
end_dt = datetime.datetime.today()
results = []
for k in romeListArray:
if k[0:1] == ' ':
k = k[1:]
params = {"motsCles": k.replace('/', '').replace('-', '').replace(',', '').replace(' ', ','),'minCreationDate': dt_to_str_iso(start_dt),'maxCreationDate': dt_to_str_iso(end_dt),'range':'0-149'}
try:
search_on_big_data = client.search(params=params)
results += search_on_big_data["resultats"]
except:
print("Il n'y a pas d'offres d'emploi.")
results_df = pd.DataFrame(results)
return results_df
app.layout = dmc.MantineProvider(
[
html.Div(
children=[
dmc.Container(
children=[
dmc.Grid(
children=[
dmc.GridCol(html.Div(
children=[
dmc.MultiSelect(
placeholder="Selectionnez vos Codes ROME",
id="framework-multi-select",
value=['K2105', 'L1101', 'L1202', 'L1507', 'L1508', 'L1509'],
data=searchByRome(''),
w=600,
mt=10,
styles={
"input": {"borderColor": "grey"},
"label": {"color": dmc.DEFAULT_THEME["colors"]["orange"][4]},
},
),
dmc.Drawer(
title="Mistral répond à vos questions sur les datas de l'emploi et des compétences.",
children=[dbc.Container(
fluid=False,
children=[
dcc.Store(id="store-conversation", data=""),
html.Div(dmc.Button("Bonjour, Mistral est à votre écoute!", variant="gradient", gradient={"from": "grape", "to": "pink", "deg": 35}), style=styleUSERIA),
conversation,
dcc.Loading(html.Div(id="loading-component"),type="default"),
controls,
#dbc.Spinner(html.Div(id="loading-component")),
],
)
],
id="drawer-simple",
padding="md",
size="50%",
position="right"
),]
), span=5),
dmc.GridCol(html.Div(dmc.Title(f"Le marché et les statistiques de l'emploi", order=1, size="30", my="20", id="chainlit-call-fn", style=styleTitle)), span=5),
dmc.GridCol(html.Div(theme_toggle, style=styleToggle), span=1),
dmc.GridCol(html.Div(dmc.Tooltip(dmc.Button(leftSection=DashIconify(icon="tabler:sparkles", width=30), id="drawer-demo-button"), label="IA générative sur les données",position="left",withArrow=True,arrowSize=6,), style=styleToggle), span=1),
dmc.GridCol(html.A(DashIconify(icon="tabler:restore", width=20), href='/', style=styleRefresh), p=0,style=styleUSERIA, span=12),
dmc.GridCol(dmc.Tabs(
[
dmc.TabsList(mx="auto",grow=True,
children=[
dmc.TabsTab("Marché de l'emploi", leftSection=DashIconify(icon="tabler:graph"), value="1"),
dmc.TabsTab("Statistiques de l'emploi", leftSection=DashIconify(icon="tabler:chart-pie"), value="2"),
dmc.TabsTab("Savoir-faire, Savoirs et Contexte des métiers", leftSection=DashIconify(icon="tabler:ikosaedr"), value="3"),
]
),
dmc.TabsPanel(
dmc.Grid(
children=[
dmc.GridCol(html.Div(
dcc.Loading(
id="loadingRepartition",
children=(dcc.Graph(id="figRepartition",selectedData={'points': [{'hovertext': ['01','02','03','04','05','06','07','08','09','10','11','12','13','14','15','16','17','18','19','2A','2B','21','22','23','24','25','26','27','28','29','30','31','32','33','34','35','36','37','38','39','40','41','42','43','44','45','46','47','48','49','50','51','52','53','54','55','56','57','58','59','60','61','62','63','64','65','66','67','68','69','70','71','72','73','74','75','76','77','78','79','80','81','82','83','84','85','86','87','88','89','90','91','92','93','94','95','971','972','973','974']}]})),
type="default",
)
), span=6),
dmc.GridCol(html.Div(
dcc.Loading(
id="loadingEmplois",
children=(dcc.Graph(id="figEmplois")),
type="default",
)
), span=6),
dmc.GridCol(html.Div(
dcc.Loading(
id="loadingContrats",
children=(dcc.Graph(id="figContrats")),
type="default",
)
), span=6),
dmc.GridCol(html.Div(
dcc.Loading(
id="loadingExperiences",
children=(dcc.Graph(id="figExperiences")),
type="default",
)
), span=6),
dmc.GridCol(html.Div(
dcc.Loading(
id="loadingCompetences",
children=(dcc.Graph(id="figCompetences")),
type="default",
)
), span=6),
dmc.GridCol(html.Div(
dcc.Loading(
id="loadingTransversales",
children=(dcc.Graph(id="figTransversales")),
type="default",
)
), span=6),
dmc.GridCol(html.Div(
dcc.Loading(
id="loadingNiveau",
children=(dcc.Graph(id="figNiveau")),
type="default",
)
), span=6),
dmc.GridCol(html.Div(
dcc.Loading(
id="loadingSecteur",
children=(dcc.Graph(id="figSecteur")),
type="default",
)
), span=6),
dmc.GridCol(html.Div(
dcc.Loading(
id="loadingTableau",
children=(dbc.Container(id="tableauEmplois")),
type="default",
)
), span=12),
]
)
, value="1"),
dmc.TabsPanel(
children=[
dmc.Button("Afficher les statistiques des métiers", mt=10, ml="auto", id="loading-button", leftSection=DashIconify(icon="tabler:chart-pie")),
html.Div(id="clicked-output"),
html.Div(id="clicked-output-tabs"),
], value="2"),
dmc.TabsPanel(
children=[
dmc.Button("Afficher les savoirs des métiers", mt=10, ml="auto", id="loading-skills", leftSection=DashIconify(icon="tabler:ikosaedr")),
html.Div(id="clicked-output-skills"),
html.Div(id="clicked-output-skills-tabs"),
], value="3"),
],
value="1",
), span=12),
],
gutter="xs",
)
],size="xxl",fluid=True
),
]
)
],
id="mantine-provider",
forceColorScheme="dark",
theme={
"primaryColor": "indigo",
"fontFamily": "'Inter', sans-serif",
"components": {
"Button": {"defaultProps": {"fw": 400}},
"Alert": {"styles": {"title": {"fontWeight": 500}}},
"AvatarGroup": {"styles": {"truncated": {"fontWeight": 500}}},
"Badge": {"styles": {"root": {"fontWeight": 500}}},
"Progress": {"styles": {"label": {"fontWeight": 500}}},
"RingProgress": {"styles": {"label": {"fontWeight": 500}}},
"CodeHighlightTabs": {"styles": {"file": {"padding": 12}}},
"Table": {
"defaultProps": {
"highlightOnHover": True,
"withTableBorder": True,
"verticalSpacing": "sm",
"horizontalSpacing": "md",
}
},
},
# add your colors
"colors": {
"deepBlue": ["#E9EDFC", "#C1CCF6", "#99ABF0"], # 10 color elements
},
"shadows": {
# other shadows (xs, sm, lg) will be merged from default theme
"md": "1px 1px 3px rgba(0,0,0,.25)",
"xl": "5px 5px 3px rgba(0,0,0,.25)",
},
"headings": {
"fontFamily": "Roboto, sans-serif",
"sizes": {
"h1": {"fontSize": 30},
},
},
},
)
@callback(
Output("mantine-provider", "forceColorScheme"),
Input("color-scheme-toggle", "n_clicks"),
State("mantine-provider", "forceColorScheme"),
prevent_initial_call=True,
)
def switch_theme(_, theme):
return "dark" if theme == "light" else "light"
@callback(
Output("drawer-simple", "opened"),
Input("drawer-demo-button", "n_clicks"),
prevent_initial_call=True,
)
def drawer_demo(n_clicks):
return True
@callback(
Output(component_id='figRepartition', component_property='figure'),
Output(component_id='figCompetences', component_property='figure'),
Output(component_id='figTransversales', component_property='figure'),
Output(component_id='figNiveau', component_property='figure'),
Output(component_id='figSecteur', component_property='figure'),
Input(component_id='framework-multi-select', component_property='value'),
Input('figEmplois', 'selectedData'),
Input("mantine-provider", "forceColorScheme"),
)
def create_repartition(array_value, selectedData, theme):
if theme == "dark":
template = "plotly_dark"
paper_bgcolor = 'rgba(36, 36, 36, 1)'
plot_bgcolor = 'rgba(36, 36, 36, 1)'
else:
template = "ggplot2"
paper_bgcolor = 'rgba(255, 255, 255, 1)'
plot_bgcolor = 'rgba(255, 255, 255, 1)'
df_FT = API_France_Travail(array_value)
######## localisation ########
df = df_FT[['intitule','typeContratLibelle','experienceLibelle','lieuTravail','secteurActiviteLibelle']].copy()
df["lieuTravail"] = df["lieuTravail"].apply(lambda x: x['libelle']).apply(lambda x: x[0:3]).apply(lambda x: x.strip())
df.drop(df[df['lieuTravail'] == 'Fra'].index, inplace = True)
df.drop(df[df['lieuTravail'] == 'FRA'].index, inplace = True)
df.drop(df[df['lieuTravail'] == 'Ile'].index, inplace = True)
df.drop(df[df['lieuTravail'] == 'Mar'].index, inplace = True)
df.drop(df[df['lieuTravail'] == 'Bou'].index, inplace = True)
df.drop(df[df['lieuTravail'] == '976'].index, inplace = True)
######## Filtre Emplois ########
options = []
options_FT = []
df_FT.dropna(subset=['intitule', 'qualitesProfessionnelles','formations','competences'], inplace=True)
if selectedData != None:
customEmplois = selectedData['points'][0]['y'][:-3]
if type(selectedData['points'][0]['y']) == str:
options.append(selectedData['points'][0]['y'][:-3])
options_FT.append(selectedData['points'][0]['y'][:-3])
else:
options = selectedData['points'][0]['y'][:-3]
options_FT = selectedData['points'][0]['y'][:-3]
else:
customEmplois = " "
options = df['intitule'].values.tolist()
options_FT = df_FT['intitule'].values.tolist()
df = df[df['intitule'].isin(options)]
df_FT = df_FT[df_FT['intitule'].isin(options_FT)]
######## localisation ########
ListCentroids = localisation()
df_localisation = df.groupby('lieuTravail').size().reset_index(name='obs')
df_localisation = df_localisation.sort_values(by=['lieuTravail'])
df_localisation['longitude'] = df_localisation['lieuTravail']
df_localisation['latitude'] = df_localisation['lieuTravail']
df_localisation["longitude"] = df_localisation['longitude'].apply(lambda x:[loc['Longitude'] for loc in ListCentroids if loc['ID'] == x]).apply(lambda x:''.join(map(str, x)))
df_localisation["longitude"] = pd.to_numeric(df_localisation["longitude"], downcast="float")
df_localisation["latitude"] = df_localisation['latitude'].apply(lambda x:[loc['Latitude'] for loc in ListCentroids if loc['ID'] == x]).apply(lambda x:''.join(map(str, x)))
df_localisation["latitude"] = pd.to_numeric(df_localisation["latitude"], downcast="float")
res = requests.get(
"https://raw.githubusercontent.com/codeforgermany/click_that_hood/main/public/data/france-regions.geojson"
)
fig_localisation = px.scatter_mapbox(df_localisation, lat="latitude", lon="longitude", height=600, template=template, hover_name="lieuTravail", size="obs").update_layout(
mapbox={
"style": "carto-positron",
"center": {"lon": 2, "lat" : 47},
"zoom": 4.5,
"layers": [
{
"source": res.json(),
"type": "line",
"color": "green",
"line": {"width": 0},
}
],
},font=dict(size=10),paper_bgcolor=paper_bgcolor,autosize=True,clickmode='event+select'
).add_annotation(x=0, y=0.90, xanchor='left', yanchor='bottom',
xref='paper', yref='paper', showarrow=False, align='left',
text='La répartition géographique des emplois<br><b>{}</b>'.format(customEmplois),font=dict(color="black",size=14))
######## Compétences professionnelles ########
#df_FT.dropna(subset=['intitule', 'qualitesProfessionnelles','formations','competences'], inplace=True)
df_FT["competences"] = df_FT["competences"].apply(lambda x:[str(e['libelle']) for e in x]).apply(lambda x:'; '.join(map(str, x)))
df_FT["qualitesProfessionnelles"] = df_FT["qualitesProfessionnelles"].apply(lambda x:[str(e['libelle']) + ": " + str(e['description']) for e in x]).apply(lambda x:'; '.join(map(str, x)))
df_comp = df_FT
df_comp['competences'] = df_FT['competences'].str.split(';')
df_comp = df_comp.explode('competences')
df_comp = df_comp.groupby('competences').size().reset_index(name='obs')
df_comp = df_comp.sort_values(by=['obs'])
df_comp = df_comp.iloc[-25:]
fig_competences = px.bar(df_comp, x='obs', y='competences', orientation='h', color='obs', height=600, template=template, labels={'obs':'nombre'}, color_continuous_scale="Teal", text_auto=True).update_layout(font=dict(size=10),paper_bgcolor=paper_bgcolor,plot_bgcolor=plot_bgcolor,clickmode='event+select',autosize=True).update_traces(hovertemplate=df_comp["competences"] + ' <br>Nombre : %{x}', y=[y[:100] + "..." for y in df_comp['competences']], showlegend=False).add_annotation(x=0, y=1.0, xanchor='left', yanchor='bottom',
xref='paper', yref='paper', showarrow=False, align='left',
text='Les principales compétences professionnelles<br><b>{}</b>'.format(customEmplois),font=dict(size=14))
######## Compétences transversales ########
df_transversales = df_FT
df_transversales['qualitesProfessionnelles'] = df_FT['qualitesProfessionnelles'].str.split(';')
df_comptransversales = df_transversales.explode('qualitesProfessionnelles')
df_comptransversales = df_comptransversales.groupby('qualitesProfessionnelles').size().reset_index(name='obs')
df_comptransversales = df_comptransversales.sort_values(by=['obs'])
df_comptransversales = df_comptransversales.iloc[-25:]
fig_transversales = px.bar(df_comptransversales, x='obs', y='qualitesProfessionnelles', orientation='h', color='obs', height=600, template=template, labels={'obs':'nombre'}, color_continuous_scale="Teal", text_auto=True).update_layout(font=dict(size=10),paper_bgcolor=paper_bgcolor,plot_bgcolor=plot_bgcolor,autosize=True).update_traces(hovertemplate=df_comptransversales["qualitesProfessionnelles"] + ' <br>Nombre : %{x}', y=[y[:80] + "..." for y in df_comptransversales["qualitesProfessionnelles"]], showlegend=False).add_annotation(x=0, y=1.0, xanchor='left', yanchor='bottom',
xref='paper', yref='paper', showarrow=False, align='left',
text='Les principales compétences transversales<br><b>{}</b>'.format(customEmplois),font=dict(size=14))
######## Niveaux de qualification ########
df_niveau = df_FT
df_niveau["formations"] = df_niveau["formations"].apply(lambda x:[str(e['niveauLibelle']) for e in x]).apply(lambda x:'; '.join(map(str, x)))
df_niveau = df_niveau.groupby('formations').size().reset_index(name='obs')
fig_niveau = px.pie(df_niveau, names='formations', height=600, values='obs', color='obs', template=template, labels={'obs':'nombre'}, color_discrete_sequence=px.colors.qualitative.Safe).update_traces(textposition='inside', textinfo='percent+label').update_layout(font=dict(size=10),paper_bgcolor=paper_bgcolor).add_annotation(x=0, y=1.0, xanchor='left', yanchor='bottom',
xref='paper', yref='paper', showarrow=False, align='left',
text='Les niveaux de qualification<br><b>{}</b>'.format(customEmplois),font=dict(size=14))
######## Secteurs ########
df_secteur = df.groupby('secteurActiviteLibelle').size().reset_index(name='obs')
df_secteur = df_secteur.sort_values(by=['obs'])
df_secteur = df_secteur.iloc[-25:]
fig_secteur = px.bar(df_secteur, x='obs', y='secteurActiviteLibelle', height=600, orientation='h', color='obs', template=template, labels={'obs':'nombre'}, color_continuous_scale="Teal", text_auto=True).update_layout(font=dict(size=10),paper_bgcolor=paper_bgcolor,plot_bgcolor=plot_bgcolor,autosize=True).update_traces(hovertemplate=df_secteur["secteurActiviteLibelle"] + ' <br>Nombre : %{x}', y=[y[:80] + "..." for y in df_secteur["secteurActiviteLibelle"]], showlegend=False).add_annotation(x=0, y=1.0, xanchor='left', yanchor='bottom',
xref='paper', yref='paper', showarrow=False, align='left',
text='Les principaux secteurs d\'activités<br><b>{}</b>'.format(customEmplois),font=dict(size=14))
return fig_localisation, fig_competences, fig_transversales, fig_niveau, fig_secteur
def create_emploi(df, theme, customRepartition):
if theme == "dark":
template = "plotly_dark"
paper_bgcolor = 'rgba(36, 36, 36, 1)'
plot_bgcolor = 'rgba(36, 36, 36, 1)'
else:
template = "ggplot2"
paper_bgcolor = 'rgba(255, 255, 255, 1)'
plot_bgcolor = 'rgba(255, 255, 255, 1)'
######## Emplois ########
df_intitule = df.groupby('intitule').size().reset_index(name='obs')
df_intitule = df_intitule.sort_values(by=['obs'])
df_intitule = df_intitule.iloc[-25:]
fig_intitule = px.bar(df_intitule, x='obs', y='intitule', height=600, orientation='h', color='obs', template=template, labels={'obs':'nombre'}, color_continuous_scale="Teal", text_auto=True).update_layout(font=dict(size=10),paper_bgcolor=paper_bgcolor,plot_bgcolor=plot_bgcolor,clickmode='event+select',autosize=True).update_traces(hovertemplate=df_intitule["intitule"] + ' <br>Nombre : %{x}', y=[y[:100] + "..." for y in df_intitule["intitule"]], showlegend=False).add_annotation(x=0, y=1.0, xanchor='left', yanchor='bottom',
xref='paper', yref='paper', showarrow=False, align='left',
text='Les principaux emplois<br><b>{}</b>'.format(customRepartition),font=dict(size=14))
return fig_intitule
def create_contrat(df, customEmplois, theme):
if theme == "dark":
template = "plotly_dark"
paper_bgcolor = 'rgba(36, 36, 36, 1)'
else:
template = "ggplot2"
paper_bgcolor = 'rgba(255, 255, 255, 1)'
######## Types de contrat ########
df_contrat = df.groupby('typeContratLibelle').size().reset_index(name='obs')
fig_contrat = px.pie(df_contrat, names='typeContratLibelle', values='obs', color='obs', height=600, template=template, labels={'obs':'nombre'}, color_discrete_sequence=px.colors.qualitative.Safe).update_traces(textposition='inside', textinfo='percent+label').update_layout(font=dict(size=10),paper_bgcolor=paper_bgcolor).add_annotation(x=0, y=1.0, xanchor='left', yanchor='bottom',
xref='paper', yref='paper', showarrow=False, align='left',
text='Les types de contrat<br><b>{}</b>'.format(customEmplois),font=dict(size=14))
return fig_contrat
def create_experience(df, customEmplois, theme):
if theme == "dark":
template = "plotly_dark"
paper_bgcolor = 'rgba(36, 36, 36, 1)'
else:
template = "ggplot2"
paper_bgcolor = 'rgba(255, 255, 255, 1)'
######## Expériences professionnelles ########
df_experience = df.groupby('experienceLibelle').size().reset_index(name='obs')
fig_experience = px.pie(df_experience, names='experienceLibelle', values='obs', color='obs', height=600, template=template, labels={'obs':'nombre'}, color_discrete_sequence=px.colors.qualitative.Safe).update_traces(textposition='inside', textinfo='percent+label').update_layout(font=dict(size=10),paper_bgcolor=paper_bgcolor).add_annotation(x=0, y=1.0, xanchor='left', yanchor='bottom',
xref='paper', yref='paper', showarrow=False, align='left',
text='Les expériences professionnelles<br><b>{}</b>'.format(customEmplois),font=dict(size=14))
return fig_experience
def create_tableau(df, theme):
if theme == "dark":
style_header = {
'fontFamily': "'Inter', sans-serif",
'fontSize': '10px',
'backgroundColor': 'rgb(30, 30, 30)',
'color': 'white'
}
style_data={
'fontFamily': "'Inter', sans-serif",
'fontSize': '10px',
'backgroundColor': 'rgb(50, 50, 50)',
'color': 'white'
}
style_tooltip='background-color: lightgrey; font-family: "Inter", sans-serif; font-size:10px; color: white'
else:
style_header = {
'fontFamily': "'Inter', sans-serif",
'fontSize': '10px',
'backgroundColor': 'transparent',
'color': 'black'
}
style_data={
'fontFamily': "'Inter', sans-serif",
'fontSize': '10px',
'backgroundColor': 'transparent',
'color': 'black'
}
style_tooltip='background-color: lightgrey; font-family: "Inter", sans-serif; font-size:10px; color: black'
######## Tableau des emplois ########
#df = df.fillna('N/A').replace('', 'N/A')
df_tableau = df[['origineOffre','intitule','typeContratLibelle','experienceLibelle','description','lieuTravail']].copy()
dictHeader = {'origineOffre': 'Lien','intitule': 'Offre','typeContratLibelle': 'Type de contrat','experienceLibelle':'Expérience','description':'Détail','lieuTravail':'Département'}
df_tableau.rename(columns=dictHeader,inplace=True)
tableau_Emplois = dash_table.DataTable(
data=df_tableau.to_dict('records'),
sort_action='native',
columns=[{'id': c, 'name': c, 'presentation': 'markdown'} if c == 'Lien' else {'id': c, 'name': c} for c in df_tableau.columns],
filter_action="native",
filter_options={"placeholder_text": "Filtrer les valeurs de la colonne..."},
page_action='native',
page_current= 0,
page_size= 10,
style_header=style_header,
style_data=style_data,
style_table={'overflowX': 'auto'},
style_cell={
'overflow': 'hidden',
'textOverflow': 'ellipsis',
'maxWidth': 0,
},
tooltip_data=[
{
column: {'value': str(value), 'type': 'markdown'}
for column, value in row.items()
} for row in df_tableau.to_dict('records')
],
css=[{
'selector': '.dash-table-tooltip',
'rule': style_tooltip
},{
'selector': '.dash-table-tooltip > p',
'rule': style_tooltip
}],
tooltip_delay=0,
tooltip_duration=None
)
return tableau_Emplois
@callback(
Output(component_id='figEmplois', component_property='figure'),
Input('figRepartition', 'selectedData'),
Input(component_id='framework-multi-select', component_property='value'),
Input("mantine-provider", "forceColorScheme"),
)
def update_emploi(selectedData, array_value, theme):
options = []
if selectedData != None:
customRepartition = selectedData['points'][0]['hovertext']
if isinstance(customRepartition, list):
customRepartition = " "
else:
customRepartition = "Département : " + customRepartition
if type(selectedData['points'][0]['hovertext']) == str:
options.append(selectedData['points'][0]['hovertext'])
else:
options = selectedData['points'][0]['hovertext']
else:
customRepartition = " "
options = ['01','02','03','04','05','06','07','08','09','10','11','12','13','14','15','16','17','18','19','2A','2B','21','22','23','24','25','26','27','28','29','30','31','32','33','34','35','36','37','38','39','40','41','42','43','44','45','46','47','48','49','50','51','52','53','54','55','56','57','58','59','60','61','62','63','64','65','66','67','68','69','70','71','72','73','74','75','76','77','78','79','80','81','82','83','84','85','86','87','88','89','90','91','92','93','94','95','971','972','973','974']
df_FT = API_France_Travail(array_value)
df = df_FT[['intitule','typeContratLibelle','experienceLibelle','lieuTravail']].copy()
df["lieuTravail"] = df["lieuTravail"].apply(lambda x: x['libelle']).apply(lambda x: x[0:3]).apply(lambda x: x.strip())
df.drop(df[df['lieuTravail'] == 'Fra'].index, inplace = True)
df.drop(df[df['lieuTravail'] == 'FRA'].index, inplace = True)
df.drop(df[df['lieuTravail'] == 'Ile'].index, inplace = True)
df.drop(df[df['lieuTravail'] == 'Mar'].index, inplace = True)
df.drop(df[df['lieuTravail'] == 'Bou'].index, inplace = True)
df.drop(df[df['lieuTravail'] == '976'].index, inplace = True)
df = df[df['lieuTravail'].isin(options)]
return create_emploi(df, theme, customRepartition)
@callback(
Output(component_id='figContrats', component_property='figure'),
Input('figRepartition', 'selectedData'),
Input('figEmplois', 'selectedData'),
Input(component_id='framework-multi-select', component_property='value'),
Input("mantine-provider", "forceColorScheme"),
)
def update_contrat(selectedData, selectedDataEmplois, array_value, theme):
df_FT = API_France_Travail(array_value)
df = df_FT[['intitule','typeContratLibelle','experienceLibelle','lieuTravail']].copy()
options = []
options_FT = []
if selectedData != None:
if type(selectedData['points'][0]['hovertext']) == str:
options.append(selectedData['points'][0]['hovertext'])
else:
options = selectedData['points'][0]['hovertext']
else:
options = ['01','02','03','04','05','06','07','08','09','10','11','12','13','14','15','16','17','18','19','2A','2B','21','22','23','24','25','26','27','28','29','30','31','32','33','34','35','36','37','38','39','40','41','42','43','44','45','46','47','48','49','50','51','52','53','54','55','56','57','58','59','60','61','62','63','64','65','66','67','68','69','70','71','72','73','74','75','76','77','78','79','80','81','82','83','84','85','86','87','88','89','90','91','92','93','94','95','971','972','973','974']
if selectedDataEmplois != None:
customEmplois = selectedDataEmplois['points'][0]['y'][:-3]
if type(selectedDataEmplois['points'][0]['y']) == str:
options_FT.append(selectedDataEmplois['points'][0]['y'][:-3])
else:
options_FT = selectedDataEmplois['points'][0]['y'][:-3]
else:
customEmplois = " "
options_FT = df['intitule'].values.tolist()
df["lieuTravail"] = df["lieuTravail"].apply(lambda x: x['libelle']).apply(lambda x: x[0:3]).apply(lambda x: x.strip())
df.drop(df[df['lieuTravail'] == 'Fra'].index, inplace = True)
df.drop(df[df['lieuTravail'] == 'FRA'].index, inplace = True)
df.drop(df[df['lieuTravail'] == 'Ile'].index, inplace = True)
df.drop(df[df['lieuTravail'] == 'Mar'].index, inplace = True)
df.drop(df[df['lieuTravail'] == 'Bou'].index, inplace = True)
df.drop(df[df['lieuTravail'] == '976'].index, inplace = True)
df = df[df['lieuTravail'].isin(options)]
df = df[df['intitule'].isin(options_FT)]
return create_contrat(df, customEmplois, theme)
@callback(
Output(component_id='figExperiences', component_property='figure'),
Input('figRepartition', 'selectedData'),
Input('figEmplois', 'selectedData'),
Input(component_id='framework-multi-select', component_property='value'),
Input("mantine-provider", "forceColorScheme"),
)
def update_experience(selectedData, selectedDataEmplois, array_value, theme):
df_FT = API_France_Travail(array_value)
df = df_FT[['intitule','typeContratLibelle','experienceLibelle','lieuTravail']].copy()
options = []
options_FT = []
if selectedData != None:
if type(selectedData['points'][0]['hovertext']) == str:
options.append(selectedData['points'][0]['hovertext'])
else:
options = selectedData['points'][0]['hovertext']
else:
options = ['01','02','03','04','05','06','07','08','09','10','11','12','13','14','15','16','17','18','19','2A','2B','21','22','23','24','25','26','27','28','29','30','31','32','33','34','35','36','37','38','39','40','41','42','43','44','45','46','47','48','49','50','51','52','53','54','55','56','57','58','59','60','61','62','63','64','65','66','67','68','69','70','71','72','73','74','75','76','77','78','79','80','81','82','83','84','85','86','87','88','89','90','91','92','93','94','95','971','972','973','974']
if selectedDataEmplois != None:
customEmplois = selectedDataEmplois['points'][0]['y'][:-3]
if type(selectedDataEmplois['points'][0]['y']) == str:
options_FT.append(selectedDataEmplois['points'][0]['y'][:-3])
else:
options_FT = selectedDataEmplois['points'][0]['y'][:-3]
else:
customEmplois = " "
options_FT = df['intitule'].values.tolist()
df["lieuTravail"] = df["lieuTravail"].apply(lambda x: x['libelle']).apply(lambda x: x[0:3]).apply(lambda x: x.strip())
df.drop(df[df['lieuTravail'] == 'Fra'].index, inplace = True)
df.drop(df[df['lieuTravail'] == 'FRA'].index, inplace = True)
df.drop(df[df['lieuTravail'] == 'Ile'].index, inplace = True)
df.drop(df[df['lieuTravail'] == 'Mar'].index, inplace = True)
df.drop(df[df['lieuTravail'] == 'Bou'].index, inplace = True)
df.drop(df[df['lieuTravail'] == '976'].index, inplace = True)
df = df[df['lieuTravail'].isin(options)]
df = df[df['intitule'].isin(options_FT)]
return create_experience(df, customEmplois, theme)
@callback(
Output(component_id='tableauEmplois', component_property='children'),
Input('figRepartition', 'selectedData'),
Input(component_id='framework-multi-select', component_property='value'),
Input("mantine-provider", "forceColorScheme"),
)
def update_tableau(selectedData, array_value, theme):
options = []
if selectedData != None:
if type(selectedData['points'][0]['hovertext']) == str:
options.append(selectedData['points'][0]['hovertext'])
else:
options = selectedData['points'][0]['hovertext']
else:
options = ['01','02','03','04','05','06','07','08','09','10','11','12','13','14','15','16','17','18','19','2A','2B','21','22','23','24','25','26','27','28','29','30','31','32','33','34','35','36','37','38','39','40','41','42','43','44','45','46','47','48','49','50','51','52','53','54','55','56','57','58','59','60','61','62','63','64','65','66','67','68','69','70','71','72','73','74','75','76','77','78','79','80','81','82','83','84','85','86','87','88','89','90','91','92','93','94','95','971','972','973','974']
df_FT = API_France_Travail(array_value)
df_FT["origineOffre"] = df_FT["origineOffre"].apply(lambda x: "[Voir l'offre sur le site web de France Travail](" + x['urlOrigine'] + ")")
df_FT["lieuTravail"] = df_FT["lieuTravail"].apply(lambda x: x['libelle']).apply(lambda x: x[0:3]).apply(lambda x: x.strip())
df_FT.drop(df_FT[df_FT['lieuTravail'] == 'Fra'].index, inplace = True)
df_FT.drop(df_FT[df_FT['lieuTravail'] == 'FRA'].index, inplace = True)
df_FT.drop(df_FT[df_FT['lieuTravail'] == 'Ile'].index, inplace = True)
df_FT.drop(df_FT[df_FT['lieuTravail'] == 'Mar'].index, inplace = True)
df_FT.drop(df_FT[df_FT['lieuTravail'] == 'Bou'].index, inplace = True)
df_FT.drop(df_FT[df_FT['lieuTravail'] == '976'].index, inplace = True)
df_FT = df_FT[df_FT['lieuTravail'].isin(options)]
return create_tableau(df_FT, theme)
clientside_callback(
"""
function updateLoadingState(n_clicks) {
return true
}
""",
Output("loading-button", "loading", allow_duplicate=True),
Input("loading-button", "n_clicks"),
prevent_initial_call=True,
)
@callback(
Output("clicked-output", "children"),
Output("clicked-output-tabs", "children"),
Output("loading-button", "loading"),
Input("loading-button", "n_clicks"),
Input(component_id='framework-multi-select', component_property='value'),
Input("mantine-provider", "forceColorScheme"),
prevent_initial_call=True,
)
def load_from_stats(n_clicks, array_value, theme):
if theme == "dark":
template = "plotly_dark"
paper_bgcolor = 'rgba(36, 36, 36, 1)'
plot_bgcolor = 'rgba(36, 36, 36, 1)'
style_header = {
'fontFamily': "'Inter', sans-serif",
'fontSize': '10px',
'backgroundColor': 'rgb(30, 30, 30)',
'color': 'white'
}
style_data={
'fontFamily': "'Inter', sans-serif",
'fontSize': '10px',
'backgroundColor': 'rgb(50, 50, 50)',
'color': 'white'
}
else:
template = "ggplot2"
paper_bgcolor = 'rgba(255, 255, 255, 1)'
plot_bgcolor = 'rgba(255, 255, 255, 1)'
style_header = {
'fontFamily': "'Inter', sans-serif",
'fontSize': '10px',
'backgroundColor': 'transparent',
'color': 'black'
}
style_data={
'fontFamily': "'Inter', sans-serif",
'fontSize': '10px',
'backgroundColor': 'transparent',
'color': 'black'
}
children = []
children_tabs = []
for j in range(0, len(array_value)):
table = datavisualisation_chiffres_cles_emplois("https://dataemploi.pole-emploi.fr/metier/chiffres-cles/NAT/FR/" + array_value[j])
array_label_rome = searchByRome(array_value[j])
df_demandeur = htmlToDataframe(table[0])
df_demandeur = df_demandeur.sort_values(by=['Indicateur'])
fig_demandeur = px.histogram(df_demandeur, x='Indicateur', y='Valeur', height=800, template=template, title="Demandeurs d'emploi et offres d'emploi du code ROME : " + array_label_rome[0]['label'], color='Indicateur', labels={'Valeur':'Nombre'}, text_auto=True).update_layout(font=dict(size=9),paper_bgcolor=paper_bgcolor,plot_bgcolor=plot_bgcolor,autosize=True)
children.append(dmc.GridCol(html.Div(dcc.Loading(id="loadingPlot",children=(dcc.Graph(figure=fig_demandeur)),type="default")), span=6),)
children_tabs.append(dmc.GridCol(html.Div(dcc.Loading(id="loadingPlot",children=[dbc.Label("Demandeurs d'emploi et offres d'emploi du code ROME : " + array_label_rome[0]['label']),dash_table.DataTable(data=df_demandeur.to_dict('records'),sort_action='native', columns=[{'id': c, 'name': c} for c in df_demandeur.columns],page_action='native', page_current= 0,page_size= 10,style_header=style_header,style_data=style_data,style_table={'overflowX': 'auto'},style_cell={'overflow': 'hidden','textOverflow': 'ellipsis','maxWidth': 0,})],type="default")), span=12),)
if len(table[1]) > 0:
df_salaire = htmlToDataframe(table[1])
df_salaire = df_salaire.sort_values(by=['salaire'])
fig_salaire = px.histogram(df_salaire, x='emploi', y='salaire', height=600, template=template, barmode='group', title="Salaires médians du code ROME : " + array_label_rome[0]['label'], color='categorie', text_auto=True).update_layout(font=dict(size=9),paper_bgcolor=paper_bgcolor,plot_bgcolor=plot_bgcolor,autosize=True)
children.append(dmc.GridCol(html.Div(dcc.Loading(id="loadingPlot",children=(dcc.Graph(figure=fig_salaire)),type="default")), span=6),)
children_tabs.append(dmc.GridCol(html.Div(dcc.Loading(id="loadingPlot",children=[dbc.Label("Salaires médians du code ROME : " + array_label_rome[0]['label']),dash_table.DataTable(data=df_salaire.to_dict('records'),sort_action='native', columns=[{'id': c, 'name': c} for c in df_salaire.columns],page_action='native', page_current= 0,page_size= 10,style_header=style_header,style_data=style_data,style_table={'overflowX': 'auto'},style_cell={'overflow': 'hidden','textOverflow': 'ellipsis','maxWidth': 0,})],type="default")), span=12),)
df_difficulte = htmlToDataframe(table[2])
if len(df_difficulte) == 0:
title = "Aucune donnée difficulté de recrutement renseignée!"
else:
title = "Difficulté de recrutement du code ROME : " + array_label_rome[0]['label']
df_difficulte = df_difficulte.sort_values(by=['Valeur'])
fig_difficulte = px.histogram(df_difficulte, x='Indicateur', y='Valeur', height=600, template=template, title=title, color='Indicateur', labels={'Valeur':'Pourcentage'}, text_auto=True).update_layout(font=dict(size=9),paper_bgcolor=paper_bgcolor,plot_bgcolor=plot_bgcolor,autosize=True)
children.append(dmc.GridCol(html.Div(dcc.Loading(id="loadingPlot",children=(dcc.Graph(figure=fig_difficulte)),type="default")), span=6))
children_tabs.append(dmc.GridCol(html.Div(dcc.Loading(id="loadingPlot",children=[dbc.Label(title),dash_table.DataTable(data=df_difficulte.to_dict('records'),sort_action='native', columns=[{'id': c, 'name': c} for c in df_difficulte.columns],page_action='native', page_current= 0,page_size= 10,style_header=style_header,style_data=style_data,style_table={'overflowX': 'auto'},style_cell={'overflow': 'hidden','textOverflow': 'ellipsis','maxWidth': 0,})],type="default")), span=12),)
df_repartitionContrat = htmlToDataframe(table[3])
df_repartitionContrat = df_repartitionContrat.sort_values(by=['Valeur'])
fig_repartitionContrat = px.pie(df_repartitionContrat, names='Indicateur', values='Valeur', color='Indicateur', template=template, title="Répartition des embauches du métier : type de contrat du code ROME : " + array_label_rome[0]['label'], labels={'Valeur':'pourcentage'}, color_discrete_sequence=px.colors.qualitative.Safe).update_traces(textposition='inside', textinfo='percent+label').update_layout(font=dict(size=10),paper_bgcolor=paper_bgcolor)
children.append(dmc.GridCol(html.Div(dcc.Loading(id="loadingPlot",children=(dcc.Graph(figure=fig_repartitionContrat)),type="default")), span=6))
children_tabs.append(dmc.GridCol(html.Div(dcc.Loading(id="loadingPlot",children=[dbc.Label("Répartition des embauches du métier : type de contrat du code ROME : " + array_label_rome[0]['label']),dash_table.DataTable(data=df_repartitionContrat.to_dict('records'),sort_action='native', columns=[{'id': c, 'name': c} for c in df_repartitionContrat.columns],page_action='native', page_current= 0,page_size= 10,style_header=style_header,style_data=style_data,style_table={'overflowX': 'auto'},style_cell={'overflow': 'hidden','textOverflow': 'ellipsis','maxWidth': 0,})],type="default")), span=12),)
df_repartitionEntreprise = htmlToDataframe(table[4])
df_repartitionEntreprise = df_repartitionEntreprise.sort_values(by=['Valeur'])
fig_repartitionEntreprise = px.pie(df_repartitionEntreprise, names='Indicateur', values='Valeur', color='Indicateur', template=template, title="Répartition des embauches du métier : type entreprise du code ROME : " + array_label_rome[0]['label'], labels={'Valeur':'pourcentage'}, color_discrete_sequence=px.colors.qualitative.Safe).update_traces(textposition='inside', textinfo='percent+label').update_layout(font=dict(size=10),paper_bgcolor=paper_bgcolor)
children.append(dmc.GridCol(html.Div(dcc.Loading(id="loadingPlot",children=(dcc.Graph(figure=fig_repartitionEntreprise)),type="default")), span=6))
children_tabs.append(dmc.GridCol(html.Div(dcc.Loading(id="loadingPlot",children=[dbc.Label("Répartition des embauches du métier : type entreprise du code ROME : " + array_label_rome[0]['label']),dash_table.DataTable(data=df_repartitionEntreprise.to_dict('records'),sort_action='native', columns=[{'id': c, 'name': c} for c in df_repartitionEntreprise.columns],page_action='native', page_current= 0,page_size= 10,style_header=style_header,style_data=style_data,style_table={'overflowX': 'auto'},style_cell={'overflow': 'hidden','textOverflow': 'ellipsis','maxWidth': 0,})],type="default")), span=12),)
return dmc.Grid(children=children), dmc.Grid(children=children_tabs), False
clientside_callback(
"""
function updateLoadingState(n_clicks) {
return true
}
""",
Output("loading-skills", "loading", allow_duplicate=True),
Input("loading-skills", "n_clicks"),
prevent_initial_call=True,
)
@callback(
Output("clicked-output-skills", "children"),
Output("loading-skills", "loading"),
Input("loading-skills", "n_clicks"),
Input(component_id='framework-multi-select', component_property='value'),
Input("mantine-provider", "forceColorScheme"),
prevent_initial_call=True,
)
def load_from_skills(n_clicks, array_value, theme):
if theme == "dark":
template = "plotly_dark"
paper_bgcolor = 'rgba(36, 36, 36, 1)'
plot_bgcolor = 'rgba(36, 36, 36, 1)'
else:
template = "ggplot2"
paper_bgcolor = 'rgba(255, 255, 255, 1)'
plot_bgcolor = 'rgba(255, 255, 255, 1)'
children = []
for j in range(0, len(array_value)):
ficheSF = getSavoirFaireFromHTMLMetier("https://candidat.francetravail.fr/metierscope/fiche-metier/" + array_value[j])
fig_SF = datavisualisation_skills_context(htmlToDataframe(ficheSF), template, paper_bgcolor, plot_bgcolor, "Savoir-faire", array_value[j])
ficheSavoir = getSavoirFromHTMLMetier("https://candidat.francetravail.fr/metierscope/fiche-metier/" + array_value[j])
fig_Savoir = datavisualisation_skills_context(htmlToDataframe(ficheSavoir), template, paper_bgcolor, plot_bgcolor, "Savoirs", array_value[j])
ficheContext = getContextFromHTMLMetier("https://candidat.francetravail.fr/metierscope/fiche-metier/" + array_value[j])
fig_Context = datavisualisation_skills_context(htmlToDataframe(ficheContext), template, paper_bgcolor, plot_bgcolor, "Contexte", array_value[j])
children.append(dmc.GridCol(html.Div(dcc.Loading(id="loadingPlot",children=(dcc.Graph(figure=fig_SF)), type="default"), style=styleTitle), span=12),)
children.append(dmc.GridCol(html.Div(dcc.Loading(id="loadingPlot",children=(dcc.Graph(figure=fig_Savoir)), type="default"), style=styleTitle), span=12),)
children.append(dmc.GridCol(html.Div(dcc.Loading(id="loadingPlot",children=(dcc.Graph(figure=fig_Context)), type="default"), style=styleTitle), span=12),)
return dmc.Grid(children=children), False
########### IA Chatbot ###########
@app.callback(
Output("display-conversation", "children"), [Input("store-conversation", "data")]
)
def update_display(chat_history):
return [
textbox(x, box="user") if i % 2 == 0 else textbox(x, box="AI")
for i, x in enumerate(chat_history.split("<split>")[:-1])
]
@app.callback(
Output("user-input", "value"),
[Input("submit", "n_clicks"), Input("user-input", "n_submit")],
)
def clear_input(n_clicks, n_submit):
return ""
@app.callback(
[Output("store-conversation", "data"), Output("loading-component", "children")],
[Input("submit", "n_clicks"), Input("user-input", "n_submit")],
[State("user-input", "value"), State("store-conversation", "data")],
Input(component_id='framework-multi-select', component_property='value'),
)
def run_chatbot(n_clicks, n_submit, user_input, chat_history, array_value):
if n_clicks == 0 and n_submit is None:
return "", None
if user_input is None or user_input == "":
return chat_history, None
df_FT = API_France_Travail(array_value)
df_FT_Select = df_FT[['intitule','typeContratLibelle','experienceLibelle','competences','description','qualitesProfessionnelles','salaire','lieuTravail','formations']].copy()
list_FT = df_FT_Select.values.tolist()
context = ''
for i in range(0,len(list_FT)):
context += "\n✔️ Emploi : " + str(list_FT[i][0]) + ";\n◉ Contrat : " + str(list_FT[i][1]) + ";\n◉ Compétences professionnelles : " + str(list_FT[i][3]).replace("{","").replace("}","").replace("[","").replace("]","").replace("code","").replace("libelle","") + ";\n" + "◉ Salaire : " + str(list_FT[i][6]).replace("{","").replace("}","").replace("[","").replace("]","") + ";\n◉ Qualification : " + str(list_FT[i][5]).replace("'libelle'","\n• 'libelle").replace("{","").replace("}","").replace("[","").replace("]","").replace("code","") + ";\n◉ Localisation : " + str(list_FT[i][7]).replace("{","").replace("}","").replace("[","").replace("]","") + ";\n◉ Expérience : " + str(list_FT[i][2]) + ";\n◉ Niveau de qualification : " + str(list_FT[i][8]).replace("{","").replace("}","").replace("[","").replace("]","") + ";\n◉ Description de l'emploi : " + str(list_FT[i][4]) + "\n"
#context = df_FT.to_string(index=False)
template = """<s>[INST] Vous êtes un ingénieur pédagogique de l'enseignement supérieur et vous êtes doué pour faire des analyses des formations de l'enseignement supérieur et de faire le rapprochement entre les compétences académiques et les compétences professionnelles attendues par le marché de l'emploi et les les recruteurs, en fonction des critères définis ci-avant. En fonction des informations suivantes et du contexte suivant seulement et strictement, répondez en langue française strictement à la question ci-dessous, en 5000 mots au moins. Lorsque cela est possible, cite les sources du contexte. Si vous ne pouvez pas répondre à la question sur la base des informations, dites que vous ne trouvez pas de réponse ou que vous ne parvenez pas à trouver de réponse. Essayez donc de comprendre en profondeur le contexte et répondez uniquement en vous basant sur les informations fournies. Ne générez pas de réponses non pertinentes.
Répondez à la question ci-dessous à partir du contexte ci-dessous :
{context}
{question} [/INST] </s>
"""
context_p = context[:28500]
name = "Mistral"
chat_history += f"Vous: {user_input}<split>{name}:"
model_input = template + chat_history.replace("<split>", "\n")
#model_input = template
prompt = PromptTemplate(template=model_input, input_variables=["question","context"])
#prompt = dedent(
# f"""
#{description}
#Vous: Bonjour {name}!
#{name}: Bonjour! Ravi de parler avec vous aujourd'hui.
#"""
#)
# First add the user input to the chat history
os.environ['HUGGINGFACEHUB_API_TOKEN'] = os.environ['HUGGINGFACEHUB_API_TOKEN']
#repo_id = "mistralai/Mistral-7B-Instruct-v0.3"
repo_id = "mistralai/Mistral-7B-Instruct-v0.2"
#repo_id = "microsoft/Phi-3.5-mini-instruct"
#mistral_url = "https://api-inference.huggingface.co/models/mistralai/Mixtral-8x22B-Instruct-v0.1"
llm = HuggingFaceEndpoint(
repo_id=repo_id, task="text2text-generation", max_new_tokens=8000, temperature=0.3, streaming=True
)
model_output = ""
chain = prompt | llm | StrOutputParser()
for s in chain.stream({"question":"D'après le contexte, " + user_input,"context":context_p}):
model_output = model_output + s
print(s, end="", flush=True)
#response = openai.Completion.create(
# engine="davinci",
# prompt=model_input,
# max_tokens=250,
# stop=["You:"],
# temperature=0.9,
#)
#model_output = response.choices[0].text.strip()
chat_history += f"{model_output}<split>"
return chat_history, None
if __name__ == '__main__':
app.run_server(debug=True)