youl commited on
Commit
a0abb52
1 Parent(s): beac54d

Upload 2 files

Browse files
Files changed (2) hide show
  1. app.py +103 -0
  2. requirements.txt +5 -0
app.py ADDED
@@ -0,0 +1,103 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import torch
3
+ import cv2
4
+ import os
5
+ import torch.nn as nn
6
+ import numpy as np
7
+ from torchvision.ops import box_iou
8
+ from PIL import Image
9
+ import albumentations as A
10
+ from albumentations.pytorch import ToTensorV2
11
+
12
+ from timeit import default_timer as timer
13
+ from typing import Tuple, Dict
14
+
15
+ # apply nms algorithm
16
+ def apply_nms(orig_prediction, iou_thresh=0.3):
17
+ # torchvision returns the indices of the bboxes to keep
18
+ keep = torchvision.ops.nms(orig_prediction['boxes'], orig_prediction['scores'], iou_thresh)
19
+ final_prediction = orig_prediction
20
+ final_prediction['boxes'] = final_prediction['boxes'][keep]
21
+ final_prediction['scores'] = final_prediction['scores'][keep]
22
+ final_prediction['labels'] = final_prediction['labels'][keep]
23
+
24
+ return final_prediction
25
+
26
+ # Draw the bounding box
27
+ def plot_img_bbox(img, target):
28
+ for box in (target['boxes']):
29
+ xmin, ymin, xmax, ymax = int(box[0].cpu()), int(box[1].cpu()), int(box[2].cpu()),int(box[3].cpu())
30
+ cv2.rectangle(img, (xmin, ymin), (xmax, ymax), (0, 0, 255), 2)
31
+ label = "palm"
32
+ # Add the label and confidence score
33
+ label = f'{label}'
34
+ cv2.putText(img, label, (xmin, ymin - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.9, (0, 0, 255), 2)
35
+
36
+ # Display the image with detections
37
+ filename = 'pred.jpg'
38
+ cv2.imwrite(filename, img)
39
+
40
+ # transform image
41
+ test_transforms = A.Compose([
42
+ A.Resize(height=1024, width=1024, always_apply=True),
43
+ A.Normalize(always_apply=True),
44
+ ToTensorV2(always_apply=True),])
45
+
46
+ # select device (whether GPU or CPU)
47
+ device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
48
+
49
+ # model loading
50
+ model = torch.load('pickel.pth',map_location=torch.device('cpu'))
51
+ model = model.to(device)
52
+
53
+
54
+ def predict(img) -> Tuple[Dict, float]:
55
+
56
+ # Start a timer
57
+ start_time = timer()
58
+
59
+ # Transform the target image and add a batch dimension
60
+ image_transformed = test_transforms(np.array(img))
61
+
62
+ image_transformed = image_transformed.unsqueeze(0)
63
+ image_transformed = image_transformed.to(device)
64
+
65
+ # inference
66
+ model.eval()
67
+ with torch.no_grad():
68
+ predictions = model(image_transformed)[0]
69
+
70
+ nms_prediction = apply_nms(predictions, iou_thresh=0.1)
71
+
72
+ plot_img_bbox(img, nms_prediction)
73
+
74
+ pred = np.array(Image.open("pred.jpg"))
75
+
76
+ # Calculate the prediction time
77
+ pred_time = round(timer() - start_time, 5)
78
+
79
+ # Return the prediction dictionary and prediction time
80
+ return pred,pred_time
81
+
82
+ ### 4. Gradio app ###
83
+ # Create title, description and article strings
84
+ title = "🌴Palm trees detection🌴"
85
+ description = "Faster r-cnn model to detect oil palm trees in drones images."
86
+ article = "Created by data354."
87
+
88
+ # Create examples list from "examples/" directory
89
+ example_list = [["examples/" + example] for example in os.listdir("examples")]
90
+
91
+ # Create the Gradio demo
92
+ demo = gr.Interface(fn=predict, # mapping function from input to output
93
+ inputs=gr.Image(type="pil"), # what are the inputs?
94
+ outputs=[gr.Label(label="Predictions"), # what are the outputs?
95
+ gr.Number(label="Prediction time (s)")], # our fn has two outputs, therefore we have two outputs
96
+ # Create examples list from "examples/" directory
97
+ examples=example_list,
98
+ title=title,
99
+ description=description,
100
+ article=article
101
+ )
102
+ # Launch the demo!
103
+ demo.launch(debug = False)
requirements.txt ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ torch
2
+ torchvision
3
+ opencv-python
4
+ numpy
5
+ albumentations