Spaces:
Runtime error
Runtime error
import gradio as gr | |
import albumentations as A | |
from functions import * | |
warnings.filterwarnings('ignore') | |
# transform image | |
test_transforms = A.Compose([ | |
A.Resize(height=1024, width=1024, always_apply=True), | |
A.Normalize(always_apply=True), | |
ToTensorV2(always_apply=True),]) | |
# select device (whether GPU or CPU) | |
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu') | |
# model loading | |
model = torch.load('pickel.pth',map_location=torch.device('cpu')) | |
model = model.to(device) | |
#-> Tuple[Dict, float] | |
def predict(img) : | |
# Start a timer | |
start_time = timer() | |
image = np.array(img) | |
h,w,_ = image.shape | |
hw = h*w | |
if hw < 2*1024*1024: | |
# Transform the target image and add a batch dimension | |
#image_transformed = test_transforms() | |
transformed = test_transforms(image= image) | |
image_transformed = transformed["image"] | |
image_transformed = image_transformed.unsqueeze(0) | |
image_transformed = image_transformed.to(device) | |
# inference | |
model.eval() | |
with torch.no_grad(): | |
predictions = model(image_transformed)[0] | |
nms_prediction = apply_nms(predictions, iou_thresh=0.1) | |
pred = plot_img_bbox(image, nms_prediction) | |
#pred = np.array(Image.open("pred.jpg")) | |
word = "Number of palm trees detected : "+str(len(nms_prediction["boxes"])) | |
# Calculate the prediction time | |
pred_time = round(timer() - start_time, 5) | |
# Return the prediction dictionary and prediction time | |
return pred,word | |
else: | |
crop(image) | |
locations = np.load("locations.npy") | |
n = inference(image,locations,model,test_transforms,device) | |
# | |
empty_image = np.zeros(image.shape) | |
del image | |
gc.collect() | |
sleep(1) | |
word = "Number of palm trees detected : "+str(n) | |
pred = create_new_ortho(locations,empty_image) | |
# remove files and folders | |
os.remove("locations.npy") | |
shutil.rmtree("images", ignore_errors=True) | |
shutil.rmtree("labels", ignore_errors=True) | |
return pred,word | |
image = gr.components.Image() | |
out_im = gr.components.Image() | |
out_lab = gr.components.Label() | |
### 4. Gradio app ### | |
# Create title, description and article strings | |
title = "🌴Palm trees detection🌴" | |
description = "Faster r-cnn model to detect oil palm trees in drones images." | |
article = "Created by data354." | |
# Create examples list from "examples/" directory | |
example_list = [["examples/" + example] for example in os.listdir("examples")] | |
#[gr.Label(label="Predictions"), # what are the outputs? | |
#gr.Number(label="Prediction time (s)")], # our fn has two outputs, therefore we have two outputs | |
# Create examples list from "examples/" directory | |
# Create the Gradio demo | |
demo = gr.Interface(fn=predict, # mapping function from input to output | |
inputs= image, #gr.Image(type="pil"), # what are the inputs? | |
outputs=[out_im,out_lab], | |
examples=example_list, | |
title=title, | |
description=description, | |
article=article | |
) | |
# Launch the demo! | |
demo.launch(debug = False) |