Delete app.py
Browse files
app.py
DELETED
@@ -1,109 +0,0 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
from api import *
|
3 |
-
from processing import *
|
4 |
-
import pandas as pd
|
5 |
-
from indices import indices
|
6 |
-
import xgboost as xgb
|
7 |
-
from lightgbm import LGBMRegressor
|
8 |
-
import pickle
|
9 |
-
import json
|
10 |
-
#import boto3
|
11 |
-
from shapely.geometry import MultiPolygon,shape
|
12 |
-
from shapely.geometry import Point
|
13 |
-
from shapely.geometry.polygon import Polygon
|
14 |
-
from glob import glob
|
15 |
-
import wget
|
16 |
-
|
17 |
-
|
18 |
-
def predict(location_name,lat, lon):
|
19 |
-
cord = [lon,lat]
|
20 |
-
lon = round(lon,4)
|
21 |
-
lat = round(lat,4)
|
22 |
-
x1 = [lon,lat]
|
23 |
-
x2 = [lat,lon]
|
24 |
-
with open("data/CIV_0.json","r") as file:
|
25 |
-
data = json.load(file)
|
26 |
-
# extract ivory coast polygone
|
27 |
-
features = [data['features'][0]['geometry']['coordinates'][0]+data['features'][0]['geometry']['coordinates'][1]+data['features'][0]['geometry']['coordinates'][2]]
|
28 |
-
data['features'][0]['geometry']['coordinates'] = features
|
29 |
-
ci_polygone = data['features'][0]['geometry']['coordinates'][0][0]
|
30 |
-
point1 = Point(x1)
|
31 |
-
point2 = Point(x2)
|
32 |
-
polygon = Polygon(ci_polygone)
|
33 |
-
result = polygon.contains(point1)
|
34 |
-
|
35 |
-
if not result:
|
36 |
-
return "Choisissez une zone de la CI","","","",""
|
37 |
-
|
38 |
-
else:
|
39 |
-
df = pd.read_csv("data/frame.csv")
|
40 |
-
name = find_good_tile(df,point2)
|
41 |
-
if name ==404:
|
42 |
-
reponse = "Sentinel-2 ne dispose pas de données ce sur ce lieu à ce jour"
|
43 |
-
return reponse,"","","",""
|
44 |
-
else:
|
45 |
-
path = "https://data354-public-assets.s3.eu-west-3.amazonaws.com/cisentineldata/"
|
46 |
-
url = path+name
|
47 |
-
wget.download(url)
|
48 |
-
unzip()
|
49 |
-
name,cld_prob,days_ago = select_best_cloud_coverage_tile()
|
50 |
-
bandes_path_10,bandes_path_20,bandes_path_60,tile_path,path_cld_20,path_cld_60 =paths(name)
|
51 |
-
# create image dataset
|
52 |
-
images_10 = extract_sub_image(bandes_path_10,tile_path,cord)
|
53 |
-
|
54 |
-
## bandes with 20m resolution
|
55 |
-
#path_cld_20
|
56 |
-
images_20 = extract_sub_image(bandes_path_20,tile_path,cord,20,1)
|
57 |
-
|
58 |
-
# bandes with 60m resolution
|
59 |
-
#path_cld_60
|
60 |
-
images_60 = extract_sub_image(bandes_path_60,tile_path,cord,60)
|
61 |
-
#
|
62 |
-
feature = images_10.tolist()+images_20.tolist()+images_60.tolist()
|
63 |
-
bands = ['B02', 'B03', 'B04', 'B05', 'B06', 'B07', 'B08', 'B8A', 'B11', 'B12','B01','B09']
|
64 |
-
X = pd.DataFrame([feature],columns = bands)
|
65 |
-
# vegetation index calculation
|
66 |
-
X = indices(X)
|
67 |
-
# load the model from disk
|
68 |
-
filename = "data/new_version_model.sav"
|
69 |
-
loaded_model = pickle.load(open(filename, 'rb'))
|
70 |
-
# make prediction
|
71 |
-
biomass = loaded_model.predict(X)[0]
|
72 |
-
carbon = 0.55*biomass
|
73 |
-
|
74 |
-
# NDVI
|
75 |
-
ndvi_index = ndvi(cord,name)
|
76 |
-
|
77 |
-
# deleted download files
|
78 |
-
delete_tiles()
|
79 |
-
|
80 |
-
return str(cld_prob)+ " % cloud coverage", str(days_ago)+" days ago",str(biomass)+" Kg/ha", str(carbon)+" KgC/ha","NDVI: "+ str(ndvi_index)
|
81 |
-
|
82 |
-
# Create title, description and article strings
|
83 |
-
title = "🌴BEEPAS : Biomass estimation to Evaluate the Environmental Performance of Agroforestry Systems🌴"
|
84 |
-
description = "This application estimates the biomass of certain areas using AI and satellite images (S2)."
|
85 |
-
article = "Created by data354."
|
86 |
-
|
87 |
-
# Create examples list from "examples/" directory
|
88 |
-
#example_list = [["examples/" + example] for example in os.listdir("examples")]
|
89 |
-
example_list = [["Foret du banco :",5.379913, -4.050445],["Pharmacie Y4 :",5.363292, -3.9481601],["Hotel ivoire :",5.316458, -4.017172],["Adjamé :",5.346938, -4.027849]]
|
90 |
-
|
91 |
-
outputs = [
|
92 |
-
gr.Textbox(label="Cloud coverage"),
|
93 |
-
gr.Textbox(label="Number of days since sensing"),
|
94 |
-
gr.Textbox(label="Above ground biomass density(AGBD) Kg/ha"),
|
95 |
-
gr.Textbox(label="Carbon stock density KgC/ha "),
|
96 |
-
gr.Textbox(label="Mean NDVI"),]
|
97 |
-
|
98 |
-
|
99 |
-
demo = gr.Interface(
|
100 |
-
fn=predict,
|
101 |
-
inputs=["text","number", "number"],
|
102 |
-
outputs=outputs, #[ "text", "text","text","text","text"],
|
103 |
-
examples=example_list,
|
104 |
-
title=title,
|
105 |
-
description=description,
|
106 |
-
article=article,
|
107 |
-
)
|
108 |
-
|
109 |
-
demo.launch(share=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|