daspartho's picture
added examples
f050cf8
raw
history blame
1.57 kB
import gradio as gr
from transformers import AutoModelForSequenceClassification, AutoTokenizer, TextClassificationPipeline
import pickle
tokenizer = AutoTokenizer.from_pretrained("daspartho/subreddit-predictor")
model = AutoModelForSequenceClassification.from_pretrained("daspartho/subreddit-predictor") # i've uploaded the model on HuggingFace :)
with open('labels.bin', 'rb') as f:
label_map = pickle.load(f)
pipe = TextClassificationPipeline(model=model, tokenizer=tokenizer, top_k=3)
def classify_text(plot):
predictions = pipe(plot)[0]
return {label_map[pred['label']]: float(pred['score']) for pred in predictions}
examples = [
["My frying pan dried with a spot that looks like a pig"],
["Adult peer pressure is hearing your neighbor mowing so you decide you better mow too"],
['a bear walks into a bar and says, "give me a whiskey and... cola"'],
["Worst Celebrity Private Jet CO2 Emissions Offenders (2022)"],
["Billionaire No More: Patagonia Founder Gives Away the Company - Profits will now go towards climate action"],
]
iface = gr.Interface(
description = "Enter a title for a reddit post, and the model will attempt to predict the subreddit.",
article = "<p style='text-align: center'><a href='https://github.com/daspartho/predict-subreddit' target='_blank'>Github</a></p>",
fn=classify_text,
inputs=gr.inputs.Textbox(label="Type the title here"),
outputs=gr.outputs.Label(label='What the model thinks'),
examples=examples
)
iface.launch()