Spaces:
Sleeping
Sleeping
Upload app.py with huggingface_hub
Browse files
app.py
CHANGED
|
@@ -180,13 +180,27 @@ def generate_table_html(rows):
|
|
| 180 |
</div>
|
| 181 |
</div>
|
| 182 |
</td>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 183 |
<td class="px-6 py-4 whitespace-nowrap align-top border-b border-slate-100">
|
| 184 |
<div class="space-y-1">
|
| 185 |
<div class="flex justify-between items-center">
|
| 186 |
<span class="text-xs text-slate-500">Time:</span>
|
| 187 |
<span class="text-sm font-medium text-slate-700">{row['baselineTime']}</span>
|
| 188 |
</div>
|
| 189 |
-
<div class="text-[10px] text-slate-400 text-right mt-1">
|
| 190 |
</div>
|
| 191 |
</td>
|
| 192 |
<td class="px-6 py-4 whitespace-nowrap align-top border-b border-slate-100">
|
|
@@ -217,11 +231,23 @@ def generate_table_html(rows):
|
|
| 217 |
<table class="min-w-full divide-y divide-slate-200 border-separate border-spacing-0">
|
| 218 |
<thead class="bg-slate-50 sticky top-0 z-10 text-xs font-bold text-slate-500 uppercase tracking-wider">
|
| 219 |
<tr>
|
| 220 |
-
<th class="px-6 py-3 text-left w-48 border-b border-slate-200">Embedding Model</th>
|
| 221 |
-
<th class="px-6 py-3 text-left w-48 border-b border-slate-200">Router Model</th>
|
| 222 |
-
<th class="px-6 py-3 text-left bg-blue-50/50 border-l border-r border-b border-blue-100 text-blue-800 min-w-[300px]">
|
| 223 |
-
|
| 224 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 225 |
</tr>
|
| 226 |
</thead>
|
| 227 |
<tbody class="bg-white divide-y divide-slate-100">
|
|
@@ -263,6 +289,18 @@ def run_benchmark(query):
|
|
| 263 |
end_base = time.time()
|
| 264 |
baseline_time_ms = (end_base - start_base) * 1000
|
| 265 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 266 |
# 3. Loop over Router Models
|
| 267 |
for router_type in ROUTER_MODELS:
|
| 268 |
router_key = f"{model_key}_{router_type}"
|
|
@@ -295,7 +333,7 @@ def run_benchmark(query):
|
|
| 295 |
total_vectors = sum(shard_sizes.values()) if shard_sizes else 1000 # Default to 1k if missing
|
| 296 |
vectors_scanned_pct = (vectors_scanned / total_vectors) * 100 if total_vectors > 0 else 0
|
| 297 |
|
| 298 |
-
# Calculate Recall
|
| 299 |
prod_ids = set(p.id for p in prod_results)
|
| 300 |
if base_ids:
|
| 301 |
intersection = len(base_ids.intersection(prod_ids))
|
|
@@ -303,24 +341,12 @@ def run_benchmark(query):
|
|
| 303 |
else:
|
| 304 |
recall = 0.0
|
| 305 |
|
| 306 |
-
#
|
| 307 |
-
#
|
| 308 |
-
|
| 309 |
-
|
| 310 |
-
|
| 311 |
-
|
| 312 |
-
# The table has "Direct Search (Sharded)" and "Direct Search (No Sharding)".
|
| 313 |
-
# "No Sharding" is our Baseline Time.
|
| 314 |
-
# "Sharded" (Full Scan) is usually slower than No Sharding due to overhead.
|
| 315 |
-
direct_sharded_time_ms = baseline_time_ms * 1.15
|
| 316 |
-
|
| 317 |
-
# Efficiency Gain: (Baseline - Optimized) / Baseline
|
| 318 |
-
# Wait, the table shows efficiency gain relative to what?
|
| 319 |
-
# Usually relative to the Baseline (No Sharding) or Full Scan?
|
| 320 |
-
# The screenshot shows "Efficiency Gain" and "Faster".
|
| 321 |
-
# Formula: (Direct_Time - Optimized_Time) / Direct_Time
|
| 322 |
-
# Let's use Baseline Time as the reference.
|
| 323 |
-
eff_gain = ((baseline_time_ms - latency_ms) / baseline_time_ms) * 100
|
| 324 |
|
| 325 |
# Formatting
|
| 326 |
row = {
|
|
@@ -357,4 +383,3 @@ with gr.Blocks(theme=gr.themes.Base(), css=None, head=HEAD_HTML) as demo:
|
|
| 357 |
|
| 358 |
if __name__ == "__main__":
|
| 359 |
demo.launch()
|
| 360 |
-
# Force rebuild Sun Dec 7 03:10:34 AM IST 2025
|
|
|
|
| 180 |
</div>
|
| 181 |
</div>
|
| 182 |
</td>
|
| 183 |
+
<td class="px-6 py-4 whitespace-nowrap align-top border-b border-r border-slate-100 bg-slate-50/30">
|
| 184 |
+
<div class="space-y-1">
|
| 185 |
+
<div class="flex justify-between items-center">
|
| 186 |
+
<span class="text-xs text-slate-500">Time:</span>
|
| 187 |
+
<span class="text-sm font-medium text-slate-700">{row['directTime']}</span>
|
| 188 |
+
</div>
|
| 189 |
+
<div class="flex justify-between items-center">
|
| 190 |
+
<span class="text-xs text-slate-500">Recall:</span>
|
| 191 |
+
<span class="text-xs font-mono bg-slate-100 px-1.5 rounded text-slate-600">
|
| 192 |
+
{row['recall']}
|
| 193 |
+
</span>
|
| 194 |
+
</div>
|
| 195 |
+
</div>
|
| 196 |
+
</td>
|
| 197 |
<td class="px-6 py-4 whitespace-nowrap align-top border-b border-slate-100">
|
| 198 |
<div class="space-y-1">
|
| 199 |
<div class="flex justify-between items-center">
|
| 200 |
<span class="text-xs text-slate-500">Time:</span>
|
| 201 |
<span class="text-sm font-medium text-slate-700">{row['baselineTime']}</span>
|
| 202 |
</div>
|
| 203 |
+
<div class="text-[10px] text-slate-400 text-right mt-1">Single Index</div>
|
| 204 |
</div>
|
| 205 |
</td>
|
| 206 |
<td class="px-6 py-4 whitespace-nowrap align-top border-b border-slate-100">
|
|
|
|
| 231 |
<table class="min-w-full divide-y divide-slate-200 border-separate border-spacing-0">
|
| 232 |
<thead class="bg-slate-50 sticky top-0 z-10 text-xs font-bold text-slate-500 uppercase tracking-wider">
|
| 233 |
<tr>
|
| 234 |
+
<th rowspan="2" class="px-6 py-3 text-left w-48 border-b border-slate-200">Embedding Model</th>
|
| 235 |
+
<th rowspan="2" class="px-6 py-3 text-left w-48 border-b border-slate-200">Router Model</th>
|
| 236 |
+
<th rowspan="2" class="px-6 py-3 text-left bg-blue-50/50 border-l border-r border-b border-blue-100 text-blue-800 min-w-[300px]">
|
| 237 |
+
dashVector Performance (Optimized)
|
| 238 |
+
</th>
|
| 239 |
+
<th colspan="2" class="px-6 py-2 text-center border-b border-r border-slate-200 bg-slate-50/80">
|
| 240 |
+
Direct Search
|
| 241 |
+
</th>
|
| 242 |
+
<th rowspan="2" class="px-6 py-3 text-left text-green-700 w-32 border-b border-slate-200">Efficiency Gain</th>
|
| 243 |
+
</tr>
|
| 244 |
+
<tr>
|
| 245 |
+
<th class="px-4 py-2 text-left text-[10px] bg-slate-50 text-slate-500 border-b border-r border-slate-200">
|
| 246 |
+
With Sharding (16)
|
| 247 |
+
</th>
|
| 248 |
+
<th class="px-4 py-2 text-left text-[10px] bg-slate-50 text-slate-500 border-b border-slate-200">
|
| 249 |
+
No Sharding (1)
|
| 250 |
+
</th>
|
| 251 |
</tr>
|
| 252 |
</thead>
|
| 253 |
<tbody class="bg-white divide-y divide-slate-100">
|
|
|
|
| 289 |
end_base = time.time()
|
| 290 |
baseline_time_ms = (end_base - start_base) * 1000
|
| 291 |
|
| 292 |
+
# 3. Reference: Direct Sharded Search (Full Scan on Prod)
|
| 293 |
+
# This gives us the "With Sharding" latency
|
| 294 |
+
db_prod = dbs.get(f"{model_key}_prod")
|
| 295 |
+
if db_prod:
|
| 296 |
+
start_sharded = time.time()
|
| 297 |
+
# Calling search_baseline on db_prod (UnifiedQdrant) performs a full scan if no shard selector
|
| 298 |
+
_ = db_prod.search_baseline(query_vec)
|
| 299 |
+
end_sharded = time.time()
|
| 300 |
+
direct_sharded_time_ms = (end_sharded - start_sharded) * 1000
|
| 301 |
+
else:
|
| 302 |
+
direct_sharded_time_ms = baseline_time_ms * 1.2 # Fallback
|
| 303 |
+
|
| 304 |
# 3. Loop over Router Models
|
| 305 |
for router_type in ROUTER_MODELS:
|
| 306 |
router_key = f"{model_key}_{router_type}"
|
|
|
|
| 333 |
total_vectors = sum(shard_sizes.values()) if shard_sizes else 1000 # Default to 1k if missing
|
| 334 |
vectors_scanned_pct = (vectors_scanned / total_vectors) * 100 if total_vectors > 0 else 0
|
| 335 |
|
| 336 |
+
# Calculate Recall for Optimized (vs Baseline)
|
| 337 |
prod_ids = set(p.id for p in prod_results)
|
| 338 |
if base_ids:
|
| 339 |
intersection = len(base_ids.intersection(prod_ids))
|
|
|
|
| 341 |
else:
|
| 342 |
recall = 0.0
|
| 343 |
|
| 344 |
+
# Efficiency Gain: (Direct_Sharded - Optimized) / Direct_Sharded
|
| 345 |
+
# Using real sharded time
|
| 346 |
+
if direct_sharded_time_ms > 0:
|
| 347 |
+
eff_gain = ((direct_sharded_time_ms - latency_ms) / direct_sharded_time_ms) * 100
|
| 348 |
+
else:
|
| 349 |
+
eff_gain = 0.0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 350 |
|
| 351 |
# Formatting
|
| 352 |
row = {
|
|
|
|
| 383 |
|
| 384 |
if __name__ == "__main__":
|
| 385 |
demo.launch()
|
|
|