Spaces:
Running
on
Zero
Running
on
Zero
""" | |
This module provides an interface for translation using the MADLAD-400 models. | |
The interface allows users to enter English text, select the target language, and choose a model. | |
The user will receive the translated text. | |
""" | |
import gradio as gr | |
import spaces | |
import torch | |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM | |
from LangMap.langid_mapping import langid_to_language | |
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
# Initialize the tokenizer | |
TOKENIZER_3B_MT = AutoTokenizer.from_pretrained("google/madlad400-3b-mt", use_fast=True) | |
# Retrieve the language codes | |
LANGUAGE_CODES = [token for token in TOKENIZER_3B_MT.get_vocab().keys() if token in langid_to_language.keys()] | |
# Mapping language codes to human readable language names | |
LANGUAGE_MAP = {k: v for k, v in langid_to_language.items() if k in LANGUAGE_CODES} | |
# Invert the language mapping for reverse lookup (from language name to language code) | |
NAME_TO_CODE_MAP = {name: code for code, name in LANGUAGE_MAP.items()} | |
# Extract the language names for the dropdown in the Gradio interface | |
LANGUAGE_NAMES = list(LANGUAGE_MAP.values()) | |
# Model choices | |
MODEL_CHOICES = [ | |
"google/madlad400-3b-mt", | |
"google/madlad400-7b-mt", | |
"google/madlad400-10b-mt", | |
"google/madlad400-7b-mt-bt" | |
] | |
MODEL_RESOURCES = {} | |
def load_tokenizer_model(model_name: str): | |
""" | |
Load tokenizer and model for a chosen model name. | |
Args: | |
model_name (str): The name of the model to load. | |
Returns: | |
tuple: The tokenizer and model for the specified model. | |
""" | |
if model_name not in MODEL_RESOURCES: | |
# Load tokenizer and model for the first time | |
tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=True) | |
model = AutoModelForSeq2SeqLM.from_pretrained(model_name, torch_dtype=torch.float16) | |
model.to(DEVICE) | |
MODEL_RESOURCES[model_name] = (tokenizer, model) | |
return MODEL_RESOURCES[model_name] | |
def translate(text: str, target_language_name: str, model_name: str) -> str: | |
""" | |
Translate the input text from English to another language. | |
Args: | |
text (str): The input text to be translated. | |
target_language_name (str): The human readable target language name. | |
model_name (str): The model name for translation. | |
Returns: | |
str: The translated text. | |
""" | |
# Convert the selected language name back to its corresponding language code | |
target_language_code = NAME_TO_CODE_MAP.get(target_language_name) | |
if target_language_code is None: | |
raise ValueError(f"Unsupported language: {target_language_name}") | |
# Load tokenizer and model if not already loaded | |
tokenizer, model = load_tokenizer_model(model_name) | |
text = target_language_code + text | |
input_ids = tokenizer(text, return_tensors="pt").input_ids.to(DEVICE) | |
outputs = model.generate(input_ids=input_ids, max_new_tokens=128000) | |
text_translated = tokenizer.batch_decode(outputs, skip_special_tokens=True) | |
return text_translated[0] | |
TITLE = "MADLAD-400 Translation" | |
DESCRIPTION = """ | |
Translation from English to (almost) 400 languages based on [research](https://arxiv.org/pdf/2309.04662) | |
by Google DeepMind and Google Research. | |
""" | |
# Gradio components | |
input_text = gr.Textbox( | |
label="Text", | |
placeholder="Enter text here" | |
) | |
target_language = gr.Dropdown( | |
choices=LANGUAGE_NAMES, # Use language names instead of codes | |
value="Hawaiian", # Default human readable language name | |
label="Target language" | |
) | |
model_choice = gr.Dropdown( | |
choices=MODEL_CHOICES, | |
value="google/madlad400-3b-mt", | |
label="Model" | |
) | |
output_text = gr.Textbox(label="Translation") | |
# Define the Gradio interface | |
demo = gr.Interface( | |
fn=translate, | |
inputs=[input_text, target_language, model_choice], | |
outputs=output_text, | |
title=TITLE, | |
description=DESCRIPTION | |
) | |
# Launch the Gradio interface | |
demo.launch() | |