Spaces:
Sleeping
Sleeping
import streamlit as st | |
from langchain.agents import initialize_agent, AgentType | |
from langchain.callbacks import StreamlitCallbackHandler | |
from langchain.chat_models import ChatOpenAI | |
from langchain.prompts import ChatPromptTemplate, MessagesPlaceholder | |
from langchain.agents.format_scratchpad import format_to_openai_function_messages | |
from langchain.agents.output_parsers import OpenAIFunctionsAgentOutputParser | |
from llm_helper import get_agent_chain, get_lc_oai_tools, convert_message | |
from langchain.agents import AgentExecutor | |
with st.sidebar: | |
openai_api_key = st.secrets["OPENAI_API_KEY"] | |
"[Get an OpenAI API key](https://platform.openai.com/account/api-keys)" | |
"[View the source code](https://github.com/streamlit/llm-examples/blob/main/pages/2_Chat_with_search.py)" | |
"[![Open in GitHub Codespaces](https://github.com/codespaces/badge.svg)](https://codespaces.new/streamlit/llm-examples?quickstart=1)" | |
st.title("π LangChain - Chat with search") | |
""" | |
In this example, we're using `StreamlitCallbackHandler` to display the thoughts and actions of an agent in an interactive Streamlit app. | |
Try more LangChain π€ Streamlit Agent examples at [github.com/langchain-ai/streamlit-agent](https://github.com/langchain-ai/streamlit-agent). | |
""" | |
if "messages" not in st.session_state: | |
st.session_state["messages"] = [ | |
{"role": "assistant", "content": "Hi, I'm a chatbot who can search the web. How can I help you?"} | |
] | |
for msg in st.session_state.messages: | |
st.chat_message(msg["role"]).write(msg["content"]) | |
if prompt := st.chat_input(placeholder="Who won the Women's U.S. Open in 2018?"): | |
st.session_state.messages.append({"role": "user", "content": prompt}) | |
st.chat_message("user").write(prompt) | |
if not openai_api_key: | |
st.info("Please add your OpenAI API key to continue.") | |
st.stop() | |
if "messages" in st.session_state: | |
chat_history = [convert_message(m) for m in st.session_state.messages[:-1]] | |
else: | |
chat_history = [] | |
with st.chat_message("assistant"): | |
st_cb = StreamlitCallbackHandler(st.container(), expand_new_thoughts=False) | |
agent = get_agent_chain(st_cb=st_cb) | |
response = agent.invoke({ | |
"input": prompt, | |
"chat_history": chat_history, | |
}) | |
response = response["output"] | |
st.session_state.messages.append({"role": "assistant", "content": response}) | |
st.write(response) | |