RAG_UI / app-agent2.py
darthPanda's picture
hooha
b7bb8ad
raw
history blame
2.46 kB
import streamlit as st
from langchain.agents import initialize_agent, AgentType
from langchain.callbacks import StreamlitCallbackHandler
from langchain.chat_models import ChatOpenAI
from langchain.prompts import ChatPromptTemplate, MessagesPlaceholder
from langchain.agents.format_scratchpad import format_to_openai_function_messages
from langchain.agents.output_parsers import OpenAIFunctionsAgentOutputParser
from llm_helper import get_agent_chain, get_lc_oai_tools, convert_message
from langchain.agents import AgentExecutor
with st.sidebar:
openai_api_key = st.secrets["OPENAI_API_KEY"]
"[Get an OpenAI API key](https://platform.openai.com/account/api-keys)"
"[View the source code](https://github.com/streamlit/llm-examples/blob/main/pages/2_Chat_with_search.py)"
"[![Open in GitHub Codespaces](https://github.com/codespaces/badge.svg)](https://codespaces.new/streamlit/llm-examples?quickstart=1)"
st.title("πŸ”Ž LangChain - Chat with search")
"""
In this example, we're using `StreamlitCallbackHandler` to display the thoughts and actions of an agent in an interactive Streamlit app.
Try more LangChain 🀝 Streamlit Agent examples at [github.com/langchain-ai/streamlit-agent](https://github.com/langchain-ai/streamlit-agent).
"""
if "messages" not in st.session_state:
st.session_state["messages"] = [
{"role": "assistant", "content": "Hi, I'm a chatbot who can search the web. How can I help you?"}
]
for msg in st.session_state.messages:
st.chat_message(msg["role"]).write(msg["content"])
if prompt := st.chat_input(placeholder="Who won the Women's U.S. Open in 2018?"):
st.session_state.messages.append({"role": "user", "content": prompt})
st.chat_message("user").write(prompt)
if not openai_api_key:
st.info("Please add your OpenAI API key to continue.")
st.stop()
if "messages" in st.session_state:
chat_history = [convert_message(m) for m in st.session_state.messages[:-1]]
else:
chat_history = []
with st.chat_message("assistant"):
st_cb = StreamlitCallbackHandler(st.container(), expand_new_thoughts=False)
agent = get_agent_chain(st_cb=st_cb)
response = agent.invoke({
"input": prompt,
"chat_history": chat_history,
})
response = response["output"]
st.session_state.messages.append({"role": "assistant", "content": response})
st.write(response)