Spaces:
Sleeping
Sleeping
Darshan
commited on
Commit
·
bae6852
1
Parent(s):
023a520
permissions issue fix
Browse files- Dockerfile +5 -3
- app.py +71 -39
- app/main.py +79 -0
- requirements.txt +6 -6
Dockerfile
CHANGED
@@ -2,13 +2,15 @@
|
|
2 |
FROM python:3.10.9
|
3 |
|
4 |
# Copy the current directory contents into the container at .
|
5 |
-
COPY
|
6 |
|
7 |
# Set the working directory to /
|
8 |
-
WORKDIR /
|
|
|
|
|
9 |
|
10 |
# Install requirements.txt
|
11 |
RUN pip install --no-cache-dir --upgrade -r /requirements.txt
|
12 |
|
13 |
# Start the FastAPI app on port 7860, the default port expected by Spaces
|
14 |
-
CMD ["uvicorn", "app:app", "--host", "0.0.0.0", "--port", "7860"]
|
|
|
2 |
FROM python:3.10.9
|
3 |
|
4 |
# Copy the current directory contents into the container at .
|
5 |
+
COPY ./app ./app
|
6 |
|
7 |
# Set the working directory to /
|
8 |
+
WORKDIR /trans
|
9 |
+
|
10 |
+
EXPOSE 7860
|
11 |
|
12 |
# Install requirements.txt
|
13 |
RUN pip install --no-cache-dir --upgrade -r /requirements.txt
|
14 |
|
15 |
# Start the FastAPI app on port 7860, the default port expected by Spaces
|
16 |
+
CMD ["uvicorn", "app.main:app", "--host", "0.0.0.0", "--port", "7860"]
|
app.py
CHANGED
@@ -1,35 +1,17 @@
|
|
1 |
-
from
|
2 |
-
|
3 |
-
|
|
|
|
|
4 |
from fastapi.middleware.cors import CORSMiddleware
|
5 |
|
6 |
-
|
7 |
-
from langchain.chains import LLMChain
|
8 |
-
from langchain.prompts import PromptTemplate
|
9 |
-
from TextGen import app
|
10 |
-
|
11 |
-
|
12 |
-
class Generate(BaseModel):
|
13 |
-
text: str
|
14 |
-
|
15 |
-
|
16 |
-
def generate_text(prompt: str):
|
17 |
-
if prompt == "":
|
18 |
-
return {"detail": "Please provide a prompt."}
|
19 |
-
else:
|
20 |
-
prompt = PromptTemplate(template=prompt, input_variables=["Prompt"])
|
21 |
-
llm = Clarifai(
|
22 |
-
pat=config.CLARIFAI_PAT,
|
23 |
-
user_id=config.USER_ID,
|
24 |
-
app_id=config.APP_ID,
|
25 |
-
model_id=config.MODEL_ID,
|
26 |
-
model_version_id=config.MODEL_VERSION_ID,
|
27 |
-
)
|
28 |
-
llmchain = LLMChain(prompt=prompt, llm=llm)
|
29 |
-
llm_response = llmchain.run({"Prompt": prompt})
|
30 |
-
return Generate(text=llm_response)
|
31 |
|
|
|
|
|
|
|
32 |
|
|
|
33 |
app.add_middleware(
|
34 |
CORSMiddleware,
|
35 |
allow_origins=["*"],
|
@@ -38,17 +20,67 @@ app.add_middleware(
|
|
38 |
allow_headers=["*"],
|
39 |
)
|
40 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
|
42 |
-
|
43 |
-
|
44 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
)
|
53 |
-
|
54 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from fastapi import FastAPI
|
2 |
+
from typing import List
|
3 |
+
import torch
|
4 |
+
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
|
5 |
+
from IndicTransToolkit import IndicProcessor
|
6 |
from fastapi.middleware.cors import CORSMiddleware
|
7 |
|
8 |
+
import os
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
+
os.environ["HF_HOME"] = "/.cache"
|
11 |
+
# Initialize FastAPI
|
12 |
+
app = FastAPI()
|
13 |
|
14 |
+
# Add CORS middleware
|
15 |
app.add_middleware(
|
16 |
CORSMiddleware,
|
17 |
allow_origins=["*"],
|
|
|
20 |
allow_headers=["*"],
|
21 |
)
|
22 |
|
23 |
+
# Initialize models and processors
|
24 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(
|
25 |
+
"ai4bharat/indictrans2-en-indic-1B", trust_remote_code=True
|
26 |
+
)
|
27 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
28 |
+
"ai4bharat/indictrans2-en-indic-1B", trust_remote_code=True
|
29 |
+
)
|
30 |
+
ip = IndicProcessor(inference=True)
|
31 |
+
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
32 |
+
model = model.to(DEVICE)
|
33 |
+
|
34 |
|
35 |
+
def translate_text(sentences: List[str], target_lang: str):
|
36 |
+
try:
|
37 |
+
src_lang = "eng_Latn"
|
38 |
+
batch = ip.preprocess_batch(sentences, src_lang=src_lang, tgt_lang=target_lang)
|
39 |
+
inputs = tokenizer(
|
40 |
+
batch,
|
41 |
+
truncation=True,
|
42 |
+
padding="longest",
|
43 |
+
return_tensors="pt",
|
44 |
+
return_attention_mask=True,
|
45 |
+
).to(DEVICE)
|
46 |
|
47 |
+
with torch.no_grad():
|
48 |
+
generated_tokens = model.generate(
|
49 |
+
**inputs,
|
50 |
+
use_cache=True,
|
51 |
+
min_length=0,
|
52 |
+
max_length=256,
|
53 |
+
num_beams=5,
|
54 |
+
num_return_sequences=1,
|
55 |
+
)
|
56 |
|
57 |
+
with tokenizer.as_target_tokenizer():
|
58 |
+
generated_tokens = tokenizer.batch_decode(
|
59 |
+
generated_tokens.detach().cpu().tolist(),
|
60 |
+
skip_special_tokens=True,
|
61 |
+
clean_up_tokenization_spaces=True,
|
62 |
+
)
|
63 |
+
|
64 |
+
translations = ip.postprocess_batch(generated_tokens, lang=target_lang)
|
65 |
+
return {
|
66 |
+
"translations": translations,
|
67 |
+
"source_language": src_lang,
|
68 |
+
"target_language": target_lang,
|
69 |
+
}
|
70 |
+
except Exception as e:
|
71 |
+
raise Exception(f"Translation failed: {str(e)}")
|
72 |
+
|
73 |
+
|
74 |
+
# FastAPI routes
|
75 |
+
@app.get("/health")
|
76 |
+
async def health_check():
|
77 |
+
return {"status": "healthy"}
|
78 |
+
|
79 |
+
|
80 |
+
@app.post("/translate")
|
81 |
+
async def translate_endpoint(sentences: List[str], target_lang: str):
|
82 |
+
try:
|
83 |
+
result = translate_text(sentences=sentences, target_lang=target_lang)
|
84 |
+
return result
|
85 |
+
except Exception as e:
|
86 |
+
raise HTTPException(status_code=500, detail=str(e))
|
app/main.py
ADDED
@@ -0,0 +1,79 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from fastapi import FastAPI, HTTPException
|
2 |
+
from typing import List
|
3 |
+
from pydantic import BaseModel
|
4 |
+
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
|
5 |
+
from IndicTransToolkit import IndicProcessor
|
6 |
+
from fastapi.middleware.cors import CORSMiddleware
|
7 |
+
|
8 |
+
app = FastAPI()
|
9 |
+
|
10 |
+
app.add_middleware(
|
11 |
+
CORSMiddleware,
|
12 |
+
allow_origins=["*"],
|
13 |
+
allow_credentials=True,
|
14 |
+
allow_methods=["*"],
|
15 |
+
allow_headers=["*"],
|
16 |
+
)
|
17 |
+
|
18 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(
|
19 |
+
"ai4bharat/indictrans2-en-indic-1B", trust_remote_code=True
|
20 |
+
)
|
21 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
22 |
+
"ai4bharat/indictrans2-en-indic-1B", trust_remote_code=True
|
23 |
+
)
|
24 |
+
|
25 |
+
ip = IndicProcessor(inference=True)
|
26 |
+
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
27 |
+
model = model.to(DEVICE)
|
28 |
+
|
29 |
+
|
30 |
+
def translate_text(sentences: List[str], target_lang: str):
|
31 |
+
try:
|
32 |
+
src_lang = "eng_Latn"
|
33 |
+
batch = ip.preprocess_batch(sentences, src_lang=src_lang, tgt_lang=target_lang)
|
34 |
+
inputs = tokenizer(
|
35 |
+
batch,
|
36 |
+
truncation=True,
|
37 |
+
padding="longest",
|
38 |
+
return_tensors="pt",
|
39 |
+
return_attention_mask=True,
|
40 |
+
).to(DEVICE)
|
41 |
+
|
42 |
+
with torch.no_grad():
|
43 |
+
generated_tokens = model.generate(
|
44 |
+
**inputs,
|
45 |
+
use_cache=True,
|
46 |
+
min_length=0,
|
47 |
+
max_length=256,
|
48 |
+
num_beams=5,
|
49 |
+
num_return_sequences=1,
|
50 |
+
)
|
51 |
+
|
52 |
+
with tokenizer.as_target_tokenizer():
|
53 |
+
generated_tokens = tokenizer.batch_decode(
|
54 |
+
generated_tokens.detach().cpu().tolist(),
|
55 |
+
skip_special_tokens=True,
|
56 |
+
)
|
57 |
+
|
58 |
+
return generated_tokens
|
59 |
+
except Exception as e:
|
60 |
+
return str(e)
|
61 |
+
|
62 |
+
|
63 |
+
@app.get("/")
|
64 |
+
def read_root():
|
65 |
+
return {"Hello": "World"}
|
66 |
+
|
67 |
+
|
68 |
+
class TranslateRequest(BaseModel):
|
69 |
+
sentences: List[str]
|
70 |
+
target_lang: str
|
71 |
+
|
72 |
+
|
73 |
+
@app.post("/translate/")
|
74 |
+
def translate(request: TranslateRequest):
|
75 |
+
try:
|
76 |
+
result = translate_text(request.sentences, request.target_lang)
|
77 |
+
return result
|
78 |
+
except Exception as e:
|
79 |
+
raise HTTPException(status_code=500, detail=str(e))
|
requirements.txt
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
-
fastapi
|
2 |
uvicorn
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
|
|
1 |
+
fastapi
|
2 |
uvicorn
|
3 |
+
torch
|
4 |
+
transformers
|
5 |
+
git+https://github.com/VarunGumma/IndicTransToolkit.git
|
6 |
+
python-multipart
|
7 |
+
pydantic
|