chat_csv / train.py
darshan8950's picture
Upload 3 files
2a0365d verified
raw
history blame
2 kB
from langchain.document_loaders.csv_loader import CSVLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.vectorstores import FAISS
from langchain.llms import CTransformers
from langchain.chains import ConversationalRetrievalChain
import streamlit as st
import tempfile
def main():
st.set_page_config(page_title="πŸ‘¨β€πŸ’» Talk with your CSV")
st.title("πŸ‘¨β€πŸ’» Talk with your CSV")
st.write("Please insert your link.")
uploaded_file = st.sidebar.file_uploader("Upload your Data", type="csv")
query = st.text_input("Send a Message")
if st.button("Submit Query", type="primary"):
DB_FAISS_PATH = "vectorstore/db_faiss"
if uploaded_file :
with tempfile.NamedTemporaryFile(delete=False) as tmp_file:
tmp_file.write(uploaded_file.getvalue())
tmp_file_path = tmp_file.name
loader = CSVLoader(file_path=tmp_file_path, encoding="utf-8", csv_args={
'delimiter': ','})
data = loader.load()
st.write(data)
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=20)
text_chunks = text_splitter.split_documents(data)
embeddings = HuggingFaceEmbeddings(model_name = 'sentence-transformers/all-MiniLM-L6-v2')
docsearch = FAISS.from_documents(text_chunks, embeddings)
docsearch.save_local(DB_FAISS_PATH)
llm = CTransformers(model="models/llama-2-7b-chat.ggmlv3.q4_0.bin",
model_type="llama",
max_new_tokens=512,
temperature=0.1)
qa = ConversationalRetrievalChain.from_llm(llm, retriever=docsearch.as_retriever())
result = qa(query)
st.write(result)
if __name__ == '__main__':
main()