Darpan commited on
Commit
b5160f5
·
1 Parent(s): c8701af

Fixes for demo

Browse files
Files changed (1) hide show
  1. app.py +54 -33
app.py CHANGED
@@ -3,6 +3,7 @@ from peft import PeftModel
3
  import torch
4
  import transformers
5
  import gradio as gr
 
6
 
7
  MODEL = "decapoda-research/llama-7b-hf"
8
  LORA_WEIGHTS = "tloen/alpaca-lora-7b"
@@ -10,43 +11,51 @@ device = "cpu"
10
  print(f"Model device = {device}", flush=True)
11
 
12
  tokenizer = LlamaTokenizer.from_pretrained(MODEL)
13
- model = LlamaForCausalLM.from_pretrained(MODEL, device_map={"": device}, low_cpu_mem_usage=True)
14
- model = PeftModel.from_pretrained(model, LORA_WEIGHTS, device_map={"": device},)
15
 
16
  model.eval()
17
 
18
- def generate_prompt(instruction, input=None):
19
- if input:
20
- return f""" Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.
21
 
22
- ### Instruction: {instruction}
23
 
24
- ### Input: {input}
25
 
26
  ### Response:
27
  """
28
 
29
  else:
30
- return f""" Below is an instruction that describes a task. Write a response that appropriately completes the request.
31
 
32
- ### Instruction: {instruction}
33
 
34
  ### Response:
35
  """
36
 
 
 
 
 
 
 
 
 
37
  def eval_prompt(
38
- instruction: str,
39
- input = None,
40
  temparature = 0.7,
41
  top_p = 0.75,
42
  top_k = 40,
43
- num_beams = 3,
44
  max_new_tokens = 128,
45
  **kwargs):
46
 
47
- prompt = generate_prompt(instruction, input)
48
- inputs = tokenizer(prompt, return_tensor = 'pt')
49
- input_ids = inputs['input_ids']
50
  generation_config = GenerationConfig(
51
  temparatue = temparature,
52
  top_p = top_p,
@@ -55,6 +64,7 @@ def eval_prompt(
55
  repetition_penalty = 1.17,
56
  ** kwargs,)
57
 
 
58
  with torch.no_grad():
59
  generation_output = model.generate(
60
  input_ids = input_ids,
@@ -63,10 +73,12 @@ def eval_prompt(
63
  output_scores = True,
64
  max_new_tokens = max_new_tokens,
65
  )
66
- s = generation_output.sequence[0]
67
  response = tokenizer.decode(s)
68
- return response.split("### Response: ")[1].strip()
69
-
 
 
70
 
71
  # def run_app():
72
  # g = gr.Interface(
@@ -84,21 +96,30 @@ def eval_prompt(
84
  # g.launch(share=True, debug=True)
85
 
86
  if __name__ == "__main__":
87
- # testing code for readme
88
- for instruction in [
89
- # "Tell me about alpacas.",
90
- # "Tell me about the president of Mexico in 2019.",
91
- # "Tell me about the king of France in 2019.",
92
- # "List all Canadian provinces in alphabetical order.",
93
- # "Write a Python program that prints the first 10 Fibonacci numbers.",
94
- # "Write a program that prints the numbers from 1 to 100. But for multiples of three print 'Fizz' instead of the number and for the multiples of five print 'Buzz'. For numbers which are multiples of both three and five print 'FizzBuzz'.",
95
- "Tell me five words that rhyme with 'shock'.",
96
- "Translate the sentence 'I have no mouth but I must scream' into Spanish.",
97
- # "Count up from 1 to 500.",
98
- ]:
99
- print("Instruction:", instruction)
100
- print("Response:", eval_prompt(instruction))
101
- print()
 
 
 
 
 
 
 
 
 
102
 
103
  ## Run the actual gradio app
104
  # run_app()
 
3
  import torch
4
  import transformers
5
  import gradio as gr
6
+ import time
7
 
8
  MODEL = "decapoda-research/llama-7b-hf"
9
  LORA_WEIGHTS = "tloen/alpaca-lora-7b"
 
11
  print(f"Model device = {device}", flush=True)
12
 
13
  tokenizer = LlamaTokenizer.from_pretrained(MODEL)
14
+ model = LlamaForCausalLM.from_pretrained(MODEL, device_map={"": device}, low_cpu_mem_usage=True, )
15
+ model = PeftModel.from_pretrained(model, LORA_WEIGHTS, device_map={"": device}, torch_dtype=torch.float16)
16
 
17
  model.eval()
18
 
19
+ def generate_prompt(input, history):
20
+ if not history:
21
+ return f""" Below A dialog, where User interacts with you - the AI.
22
 
23
+ ### Instruction: AI is helpful, kind, obedient, honest, and knows its own limits.
24
 
25
+ ### User: {input}
26
 
27
  ### Response:
28
  """
29
 
30
  else:
31
+ return f"""{history}
32
 
33
+ ### User: {input}
34
 
35
  ### Response:
36
  """
37
 
38
+ # else:
39
+ # return f""" Below is an instruction that describes a task. Write a response that appropriately completes the request.
40
+ #
41
+ # ### Instruction: {instruction}
42
+ #
43
+ # ### Response:
44
+ # """
45
+
46
  def eval_prompt(
47
+ input: str,
48
+ history = "",
49
  temparature = 0.7,
50
  top_p = 0.75,
51
  top_k = 40,
52
+ num_beams = 1,
53
  max_new_tokens = 128,
54
  **kwargs):
55
 
56
+ history = generate_prompt(input, history)
57
+ inputs = tokenizer(history, return_tensors = "pt")
58
+ input_ids = inputs["input_ids"]
59
  generation_config = GenerationConfig(
60
  temparatue = temparature,
61
  top_p = top_p,
 
64
  repetition_penalty = 1.17,
65
  ** kwargs,)
66
 
67
+ # with torch.inference_mode():
68
  with torch.no_grad():
69
  generation_output = model.generate(
70
  input_ids = input_ids,
 
73
  output_scores = True,
74
  max_new_tokens = max_new_tokens,
75
  )
76
+ s = generation_output.sequences[0]
77
  response = tokenizer.decode(s)
78
+ # print(response.split('### Response:')[-1].strip())
79
+ bot_response = response.split("### Response:")[-1].strip()
80
+ history += bot_response
81
+ return history, bot_response
82
 
83
  # def run_app():
84
  # g = gr.Interface(
 
96
  # g.launch(share=True, debug=True)
97
 
98
  if __name__ == "__main__":
99
+ history = ""
100
+
101
+ while True:
102
+ # testing code for readme
103
+ # for instruction in [
104
+ # "Tell me about alpacas.",
105
+ # "Tell me about the president of Mexico in 2019.",
106
+ # "Tell me about the king of France in 2019.",
107
+ # "List all Canadian provinces in alphabetical order.",
108
+ # "Write a Python program that prints the first 10 Fibonacci numbers.",
109
+ # "Write a program that prints the numbers from 1 to 100. But for multiples of three print 'Fizz' instead of the number and for the multiples of five print 'Buzz'. For numbers which are multiples of both three and five print 'FizzBuzz'.",
110
+ # "Tell me five words that rhyme with 'shock'.",
111
+ # "Translate the sentence 'I have no mouth but I must scream' into Spanish.",
112
+ # "Count up from 1 to 500.",
113
+ # ]:
114
+
115
+ print("Input text here: ", end=' ')
116
+ user_input = input()
117
+ tick = time.time()
118
+ history, response = eval_prompt(user_input, history)
119
+ print(f"Bot: {response}")
120
+ print(f"Present history: {history}")
121
+ print(f"Inference time = {time.time() - tick} seconds")
122
+ print()
123
 
124
  ## Run the actual gradio app
125
  # run_app()