darkmortal commited on
Commit
c7995ca
·
verified ·
1 Parent(s): 9283957

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +23 -7
app.py CHANGED
@@ -1,20 +1,36 @@
1
- import streamlit as st
2
  from transformers import pipeline
3
  from PIL import Image
 
 
4
 
5
- pipeline = pipeline(task="image-classification", model="julien-c/hotdog-not-hotdog")
6
 
7
- st.title("Hot Dog? Or Not?")
8
 
9
- file_name = st.file_uploader("Upload a hot dog candidate image")
 
 
 
 
 
 
 
 
10
 
11
  if file_name is not None:
12
  col1, col2 = st.columns(2)
13
 
14
  image = Image.open(file_name)
15
  col1.image(image, use_column_width=True)
16
- predictions = pipeline(image)
17
 
 
 
 
 
18
  col2.header("Probabilities")
19
- for p in predictions:
20
- col2.subheader(f"{ p['label'] }: { round(p['score'] * 100, 1)}%")
 
 
 
 
 
 
1
  from transformers import pipeline
2
  from PIL import Image
3
+ import requests
4
+ from io import BytesIO
5
 
6
+ classifier = pipeline("zero-shot-image-classification", model="google/siglip-base-patch16-224")
7
 
8
+ st.title("Image classifier model demo")
9
 
10
+ file_name = st.file_uploader("Upload an image")
11
+
12
+ def scan_image(image, label, tolerance = 0.01):
13
+ predictions = classifier(image, candidate_labels = [label, "other"])
14
+ dict = {}
15
+ for prediction in predictions:
16
+ dict[prediction['label']] = prediction['score']
17
+ # print(json.dumps(dict, indent = 3))
18
+ return (dict[label] > (dict['other'] + tolerance), dict)
19
 
20
  if file_name is not None:
21
  col1, col2 = st.columns(2)
22
 
23
  image = Image.open(file_name)
24
  col1.image(image, use_column_width=True)
 
25
 
26
+ label = st.text_input("What to look for in the image?", "Cats")
27
+
28
+ predictions = scan_image(image, label)
29
+
30
  col2.header("Probabilities")
31
+ for key, value in predictions[1]:
32
+ col2.subheader(f"{ key }: { round(value * 100, 1)}%")
33
+
34
+ if predictions[1]:
35
+ st.header("The object is present in the given image")
36
+ else: st.header("The object is not found in the given image")