selfie / configs.py
dar-tau's picture
Update configs.py
7098573 verified
raw
history blame
5.75 kB
import os
import torch
llama_layers_format = 'model.layers.{k}'
gpt_layers_format = 'transformer.h.{k}'
dataset_info = [
{'name': 'Common Sense', 'hf_repo': 'tau/commonsense_qa', 'text_col': 'question'},
{'name': 'Factual Recall', 'hf_repo': 'azhx/counterfact-filtered-gptj6b', 'text_col': 'subject+predicate',
'filter': lambda x: x['label'] == 1},
# {'name': 'Physical Understanding', 'hf_repo': 'piqa', 'text_col': 'goal'},
{'name': 'Social Reasoning', 'hf_repo': 'ProlificAI/social-reasoning-rlhf', 'text_col': 'question'},
{'name': 'Open Domain Question Answering', 'hf_repo': 'nq_open', 'text_col': 'question'},
]
model_info = {
'LLAMA2-7B': dict(model_path='meta-llama/Llama-2-7b-chat-hf', token=os.environ['hf_token'],
original_prompt_template='<s>{prompt}',
interpretation_prompt_template='<s>[INST] [X] [/INST] {prompt}',
layers_format=llama_layers_format),
'LLAMA2-13B': dict(model_path='meta-llama/Llama-2-13b-chat-hf',
token=os.environ['hf_token'], torch_dtype=torch.float16,
wait_with_hidden_states=True,
# device_map='auto', max_memory={0: "15GB", 1: "30GB"}, dont_cuda=True, # load_in_8bit=True,
original_prompt_template='<s>{prompt}',
interpretation_prompt_template='<s>[INST] [X] [/INST] {prompt}',
layers_format=llama_layers_format),
'GPT-J 6B': dict(model_path='EleutherAI/gpt-j-6b', original_prompt_template='{prompt}',
interpretation_prompt_template='User: [X]\n\nAnswer: {prompt}',
layers_format=gpt_layers_format),
'Mistral-7B Instruct': dict(model_path='mistralai/Mistral-7B-Instruct-v0.2', device_map='cpu',
original_prompt_template='<s>{prompt}',
interpretation_prompt_template='<s>[INST] [X] [/INST] {prompt}',
layers_format=llama_layers_format),
'GPT-2 Small': dict(model_path='gpt2', original_prompt_template='{prompt}',
interpretation_prompt_template='User: [X]\n\nAnswer: {prompt}',
layers_format=gpt_layers_format),
# 'Mixtral 8x7B Instruct (Experimental)': dict(model_path='TheBloke/Mixtral-8x7B-Instruct-v0.1-AWQ',
# token=os.environ['hf_token'], wait_with_hidden_states=True,
# original_prompt_template='<s>{prompt}',
# interpretation_prompt_template='<s>[INST] [X] [/INST] {prompt}',
# layers_format=llama_layers_format
# ),
# 'Wizard Vicuna 30B Uncensored (Experimental)': dict(model_path='TheBloke/Wizard-Vicuna-30B-Uncensored-GPTQ',
# token=os.environ['hf_token'],
# wait_with_hidden_states=True, dont_cuda=True, device_map='cuda',
# original_prompt_template='<s>USER: {prompt}',
# interpretation_prompt_template='<s>USER: [X] ASSISTANT: {prompt}',
# layers_format=llama_layers_format
# ),
# 'GPT-2 Medium': dict(model_path='gpt2-medium', original_prompt_template='{prompt}',
# interpretation_prompt_template='User: [X]\n\nAnswer: {prompt}',
# layers_format=gpt_layers_format),
# 'GPT-2 Large': dict(model_path='gpt2-large', original_prompt_template='{prompt}',
# interpretation_prompt_template='User: [X]\n\nAnswer: {prompt}',
# layers_format=gpt_layers_format),
# 'GPT-2 XL': dict(model_path='gpt2-xl', original_prompt_template='{prompt}',
# interpretation_prompt_template='User: [X]\n\nAnswer: {prompt}',
# layers_format=gpt_layers_format),
# 'CodeLLAMA 70B Instruct (Experimental)': dict(model_path='TheBloke/CodeLlama-70B-Instruct-GPTQ',
# token=os.environ['hf_token'],
# wait_with_hidden_states=True, dont_cuda=True, device_map='cuda', # disable_exllama=True,
# original_prompt_template='<s>{prompt}',
# interpretation_prompt_template='<s>[INST] [X] [/INST] {prompt}',
# layers_format=llama_layers_format
# ),
# 'Gemma-2B': dict(model_path='google/gemma-2b', device_map='cpu', token=os.environ['hf_token'],
# original_prompt_template='<bos>{prompt}',
# interpretation_prompt_template='<bos>User: [X]\n\nAnswer: {prompt}',
# ),
# 'TheBloke/Mistral-7B-Instruct-v0.2-GGUF': dict(model_file='mistral-7b-instruct-v0.2.Q5_K_S.gguf',
# tokenizer='mistralai/Mistral-7B-Instruct-v0.2',
# model_type='llama', hf=True, ctransformers=True,
# original_prompt_template='<s>[INST] {prompt} [/INST]',
# interpretation_prompt_template='<s>[INST] [X] [/INST] {prompt}',
# )
}