hugging-research / scripts /text_inspector_tool.py
daqc's picture
Upload 61 files
b67af4a verified
from typing import Optional
import os
from smolagents import Tool
from smolagents.models import MessageRole, Model
from .mdconvert import MarkdownConverter
class TextInspectorTool(Tool):
name = "inspect_file_as_text"
description = """
You cannot load files yourself: instead call this tool to read a file as markdown text and ask questions about it.
This tool handles the following file extensions: [".html", ".htm", ".xlsx", ".pptx", ".wav", ".mp3", ".flac", ".pdf", ".docx", ".mjs", ".js"], and all other types of text files. IT DOES NOT HANDLE IMAGES."""
inputs = {
"file_path": {
"description": "The path to the file you want to read as text. Must be a '.something' file, like '.pdf'. If it is an image, use the visualizer tool instead! DO NOT use this tool for an HTML webpage: use the web_search tool instead!",
"type": "string",
},
"question": {
"description": "[Optional]: Your question, as a natural language sentence. Provide as much context as possible. Do not pass this parameter if you just want to directly return the content of the file.",
"type": "string",
"nullable": True,
},
}
output_type = "string"
md_converter = MarkdownConverter()
def __init__(self, model: Model, text_limit: int):
super().__init__()
self.model = model
self.text_limit = text_limit
def forward_initial_exam_mode(self, file_path, question):
try:
# Only allow reading files from uploads directory
uploads_dir = os.path.abspath(os.path.join(os.getcwd(), "uploads"))
candidate_path = os.path.abspath(file_path)
if not candidate_path.startswith(uploads_dir + os.sep):
# Fallback to uploads/<basename>
candidate_path = os.path.join(uploads_dir, os.path.basename(file_path))
result = self.md_converter.convert(candidate_path)
if file_path[-4:] in [".png", ".jpg"]:
raise Exception("Cannot use inspect_file_as_text tool with images: use visualizer instead!")
if ".zip" in file_path:
return result.text_content
if not question:
return result.text_content
if len(result.text_content) < 4000:
return "Document content: " + result.text_content
# For larger files, just return the content without model processing to avoid freezing
return f"Document title: {result.title}\n\nDocument content:\n{result.text_content[:self.text_limit]}"
except Exception as e:
return f"Error reading file '{file_path}': {str(e)}. Access is restricted to files uploaded via the interface."
def forward(self, file_path, question: Optional[str] = None) -> str:
try:
# Only allow reading files from uploads directory
uploads_dir = os.path.abspath(os.path.join(os.getcwd(), "uploads"))
candidate_path = os.path.abspath(file_path)
if not candidate_path.startswith(uploads_dir + os.sep):
# Fallback to uploads/<basename>
candidate_path = os.path.join(uploads_dir, os.path.basename(file_path))
result = self.md_converter.convert(candidate_path)
if file_path[-4:] in [".png", ".jpg"]:
raise Exception("Cannot use inspect_file_as_text tool with images: use visualizer instead!")
if ".zip" in file_path:
return result.text_content
if not question:
return result.text_content
# For questions, return the content with a note about the question
return f"Question: {question}\n\nDocument title: {result.title}\n\nDocument content:\n{result.text_content[:self.text_limit]}"
except Exception as e:
return f"Error reading file '{file_path}': {str(e)}. Access is restricted to files uploaded via the interface."