|
import gradio as gr |
|
from transformers import pipeline |
|
|
|
pipeline = pipeline(task="image-classification", model="julien-c/hotdog-not-hotdog") |
|
|
|
def predict(input_img): |
|
predictions = pipeline(input_img) |
|
return input_img, {p["label"]: p["score"] for p in predictions} |
|
|
|
gradio_app = gr.Interface( |
|
predict, |
|
inputs=gr.Image(label="Select hot dog candidate", sources=['upload', 'webcam'], type="pil"), |
|
outputs=[gr.Image(label="Processed Image"), gr.Label(label="Result", num_top_classes=2)], |
|
title="Does this picture contain a Hot Dog?", |
|
description = 'This is a demo of the hotdog-not-hotdog model by julien-c.<br><br>', |
|
css=".gradio-container {background-color: blanchedalmond;}" |
|
) |
|
|
|
if __name__ == "__main__": |
|
gradio_app.launch() |
|
|