Spaces:
Sleeping
Sleeping
import streamlit as st | |
import pandas as pd | |
import os | |
import sys | |
from io import BytesIO, StringIO | |
import tensorflow as tf | |
from PIL import Image | |
import numpy as np | |
# load files | |
model=tf.keras.models.load_model('./src/best_model_sore.keras') | |
klas = ['baseball_cap', 'beanie_hat', 'bucket_hat', 'fedora_hat', 'flat_cap'] | |
st.title('Jenis Topi') | |
def run(): | |
picup = st.file_uploader('Upload a picture', type=['jpg', 'jpeg', 'png']) | |
if picup is not None: | |
st.image(picup, caption='Uploaded Image', use_column_width=True) | |
img = Image.open(picup).convert('RGB') | |
img = img.resize((400,400)) | |
img_array = np.array(img) | |
img_array = np.expand_dims(img_array, axis=0) | |
prediction = model.predict(img_array) | |
pred_index = np.argmax(prediction) | |
pred_class = klas[pred_index] | |
confidence = prediction[0][pred_index]*100 | |
st.write(f'Prediction: **{pred_class}** ({confidence:.2f}% confidence)') | |
st.success(f'Prediction: **{pred_class}** ({confidence:.2f}% confidence)') | |
if __name__ == '__main__': | |
run() |