Spaces:
Build error
Build error
# Copyright (c) OpenMMLab. All rights reserved. | |
import argparse | |
import os.path as osp | |
import warnings | |
from functools import partial | |
import numpy as np | |
import onnx | |
import torch | |
from mmcv import Config, DictAction | |
from mmdet.core.export import build_model_from_cfg, preprocess_example_input | |
from mmdet.core.export.model_wrappers import ONNXRuntimeDetector | |
def pytorch2onnx(model, | |
input_img, | |
input_shape, | |
normalize_cfg, | |
opset_version=11, | |
show=False, | |
output_file='tmp.onnx', | |
verify=False, | |
test_img=None, | |
do_simplify=False, | |
dynamic_export=None, | |
skip_postprocess=False): | |
input_config = { | |
'input_shape': input_shape, | |
'input_path': input_img, | |
'normalize_cfg': normalize_cfg | |
} | |
# prepare input | |
one_img, one_meta = preprocess_example_input(input_config) | |
img_list, img_meta_list = [one_img], [[one_meta]] | |
if skip_postprocess: | |
warnings.warn('Not all models support export onnx without post ' | |
'process, especially two stage detectors!') | |
model.forward = model.forward_dummy | |
torch.onnx.export( | |
model, | |
one_img, | |
output_file, | |
input_names=['input'], | |
export_params=True, | |
keep_initializers_as_inputs=True, | |
do_constant_folding=True, | |
verbose=show, | |
opset_version=opset_version) | |
print(f'Successfully exported ONNX model without ' | |
f'post process: {output_file}') | |
return | |
# replace original forward function | |
origin_forward = model.forward | |
model.forward = partial( | |
model.forward, | |
img_metas=img_meta_list, | |
return_loss=False, | |
rescale=False) | |
output_names = ['dets', 'labels'] | |
if model.with_mask: | |
output_names.append('masks') | |
input_name = 'input' | |
dynamic_axes = None | |
if dynamic_export: | |
dynamic_axes = { | |
input_name: { | |
0: 'batch', | |
2: 'height', | |
3: 'width' | |
}, | |
'dets': { | |
0: 'batch', | |
1: 'num_dets', | |
}, | |
'labels': { | |
0: 'batch', | |
1: 'num_dets', | |
}, | |
} | |
if model.with_mask: | |
dynamic_axes['masks'] = {0: 'batch', 1: 'num_dets'} | |
torch.onnx.export( | |
model, | |
img_list, | |
output_file, | |
input_names=[input_name], | |
output_names=output_names, | |
export_params=True, | |
keep_initializers_as_inputs=True, | |
do_constant_folding=True, | |
verbose=show, | |
opset_version=opset_version, | |
dynamic_axes=dynamic_axes) | |
model.forward = origin_forward | |
if do_simplify: | |
import onnxsim | |
from mmdet import digit_version | |
min_required_version = '0.4.0' | |
assert digit_version(onnxsim.__version__) >= digit_version( | |
min_required_version | |
), f'Requires to install onnxsim>={min_required_version}' | |
model_opt, check_ok = onnxsim.simplify(output_file) | |
if check_ok: | |
onnx.save(model_opt, output_file) | |
print(f'Successfully simplified ONNX model: {output_file}') | |
else: | |
warnings.warn('Failed to simplify ONNX model.') | |
print(f'Successfully exported ONNX model: {output_file}') | |
if verify: | |
# check by onnx | |
onnx_model = onnx.load(output_file) | |
onnx.checker.check_model(onnx_model) | |
# wrap onnx model | |
onnx_model = ONNXRuntimeDetector(output_file, model.CLASSES, 0) | |
if dynamic_export: | |
# scale up to test dynamic shape | |
h, w = [int((_ * 1.5) // 32 * 32) for _ in input_shape[2:]] | |
h, w = min(1344, h), min(1344, w) | |
input_config['input_shape'] = (1, 3, h, w) | |
if test_img is None: | |
input_config['input_path'] = input_img | |
# prepare input once again | |
one_img, one_meta = preprocess_example_input(input_config) | |
img_list, img_meta_list = [one_img], [[one_meta]] | |
# get pytorch output | |
with torch.no_grad(): | |
pytorch_results = model( | |
img_list, | |
img_metas=img_meta_list, | |
return_loss=False, | |
rescale=True)[0] | |
img_list = [_.cuda().contiguous() for _ in img_list] | |
if dynamic_export: | |
img_list = img_list + [_.flip(-1).contiguous() for _ in img_list] | |
img_meta_list = img_meta_list * 2 | |
# get onnx output | |
onnx_results = onnx_model( | |
img_list, img_metas=img_meta_list, return_loss=False)[0] | |
# visualize predictions | |
score_thr = 0.3 | |
if show: | |
out_file_ort, out_file_pt = None, None | |
else: | |
out_file_ort, out_file_pt = 'show-ort.png', 'show-pt.png' | |
show_img = one_meta['show_img'] | |
model.show_result( | |
show_img, | |
pytorch_results, | |
score_thr=score_thr, | |
show=True, | |
win_name='PyTorch', | |
out_file=out_file_pt) | |
onnx_model.show_result( | |
show_img, | |
onnx_results, | |
score_thr=score_thr, | |
show=True, | |
win_name='ONNXRuntime', | |
out_file=out_file_ort) | |
# compare a part of result | |
if model.with_mask: | |
compare_pairs = list(zip(onnx_results, pytorch_results)) | |
else: | |
compare_pairs = [(onnx_results, pytorch_results)] | |
err_msg = 'The numerical values are different between Pytorch' + \ | |
' and ONNX, but it does not necessarily mean the' + \ | |
' exported ONNX model is problematic.' | |
# check the numerical value | |
for onnx_res, pytorch_res in compare_pairs: | |
for o_res, p_res in zip(onnx_res, pytorch_res): | |
np.testing.assert_allclose( | |
o_res, p_res, rtol=1e-03, atol=1e-05, err_msg=err_msg) | |
print('The numerical values are the same between Pytorch and ONNX') | |
def parse_normalize_cfg(test_pipeline): | |
transforms = None | |
for pipeline in test_pipeline: | |
if 'transforms' in pipeline: | |
transforms = pipeline['transforms'] | |
break | |
assert transforms is not None, 'Failed to find `transforms`' | |
norm_config_li = [_ for _ in transforms if _['type'] == 'Normalize'] | |
assert len(norm_config_li) == 1, '`norm_config` should only have one' | |
norm_config = norm_config_li[0] | |
return norm_config | |
def parse_args(): | |
parser = argparse.ArgumentParser( | |
description='Convert MMDetection models to ONNX') | |
parser.add_argument('config', help='test config file path') | |
parser.add_argument('checkpoint', help='checkpoint file') | |
parser.add_argument('--input-img', type=str, help='Images for input') | |
parser.add_argument( | |
'--show', | |
action='store_true', | |
help='Show onnx graph and detection outputs') | |
parser.add_argument('--output-file', type=str, default='tmp.onnx') | |
parser.add_argument('--opset-version', type=int, default=11) | |
parser.add_argument( | |
'--test-img', type=str, default=None, help='Images for test') | |
parser.add_argument( | |
'--dataset', | |
type=str, | |
default='coco', | |
help='Dataset name. This argument is deprecated and will be removed \ | |
in future releases.') | |
parser.add_argument( | |
'--verify', | |
action='store_true', | |
help='verify the onnx model output against pytorch output') | |
parser.add_argument( | |
'--simplify', | |
action='store_true', | |
help='Whether to simplify onnx model.') | |
parser.add_argument( | |
'--shape', | |
type=int, | |
nargs='+', | |
default=[800, 1216], | |
help='input image size') | |
parser.add_argument( | |
'--mean', | |
type=float, | |
nargs='+', | |
default=[123.675, 116.28, 103.53], | |
help='mean value used for preprocess input data.This argument \ | |
is deprecated and will be removed in future releases.') | |
parser.add_argument( | |
'--std', | |
type=float, | |
nargs='+', | |
default=[58.395, 57.12, 57.375], | |
help='variance value used for preprocess input data. ' | |
'This argument is deprecated and will be removed in future releases.') | |
parser.add_argument( | |
'--cfg-options', | |
nargs='+', | |
action=DictAction, | |
help='Override some settings in the used config, the key-value pair ' | |
'in xxx=yyy format will be merged into config file. If the value to ' | |
'be overwritten is a list, it should be like key="[a,b]" or key=a,b ' | |
'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" ' | |
'Note that the quotation marks are necessary and that no white space ' | |
'is allowed.') | |
parser.add_argument( | |
'--dynamic-export', | |
action='store_true', | |
help='Whether to export onnx with dynamic axis.') | |
parser.add_argument( | |
'--skip-postprocess', | |
action='store_true', | |
help='Whether to export model without post process. Experimental ' | |
'option. We do not guarantee the correctness of the exported ' | |
'model.') | |
args = parser.parse_args() | |
return args | |
if __name__ == '__main__': | |
args = parse_args() | |
warnings.warn('Arguments like `--mean`, `--std`, `--dataset` would be \ | |
parsed directly from config file and are deprecated and \ | |
will be removed in future releases.') | |
assert args.opset_version == 11, 'MMDet only support opset 11 now' | |
try: | |
from mmcv.onnx.symbolic import register_extra_symbolics | |
except ModuleNotFoundError: | |
raise NotImplementedError('please update mmcv to version>=v1.0.4') | |
register_extra_symbolics(args.opset_version) | |
cfg = Config.fromfile(args.config) | |
if args.cfg_options is not None: | |
cfg.merge_from_dict(args.cfg_options) | |
if args.shape is None: | |
img_scale = cfg.test_pipeline[1]['img_scale'] | |
input_shape = (1, 3, img_scale[1], img_scale[0]) | |
elif len(args.shape) == 1: | |
input_shape = (1, 3, args.shape[0], args.shape[0]) | |
elif len(args.shape) == 2: | |
input_shape = (1, 3) + tuple(args.shape) | |
else: | |
raise ValueError('invalid input shape') | |
# build the model and load checkpoint | |
model = build_model_from_cfg(args.config, args.checkpoint, | |
args.cfg_options) | |
if not args.input_img: | |
args.input_img = osp.join(osp.dirname(__file__), '../../demo/demo.jpg') | |
normalize_cfg = parse_normalize_cfg(cfg.test_pipeline) | |
# convert model to onnx file | |
pytorch2onnx( | |
model, | |
args.input_img, | |
input_shape, | |
normalize_cfg, | |
opset_version=args.opset_version, | |
show=args.show, | |
output_file=args.output_file, | |
verify=args.verify, | |
test_img=args.test_img, | |
do_simplify=args.simplify, | |
dynamic_export=args.dynamic_export, | |
skip_postprocess=args.skip_postprocess) | |
# Following strings of text style are from colorama package | |
bright_style, reset_style = '\x1b[1m', '\x1b[0m' | |
red_text, blue_text = '\x1b[31m', '\x1b[34m' | |
white_background = '\x1b[107m' | |
msg = white_background + bright_style + red_text | |
msg += 'DeprecationWarning: This tool will be deprecated in future. ' | |
msg += blue_text + 'Welcome to use the unified model deployment toolbox ' | |
msg += 'MMDeploy: https://github.com/open-mmlab/mmdeploy' | |
msg += reset_style | |
warnings.warn(msg) | |