Spaces:
Build error
Build error
# Copyright (c) OpenMMLab. All rights reserved. | |
import numpy as np | |
import pytest | |
import torch | |
from mmdet.core import BitmapMasks, PolygonMasks, mask2bbox | |
def dummy_raw_bitmap_masks(size): | |
""" | |
Args: | |
size (tuple): expected shape of dummy masks, (H, W) or (N, H, W) | |
Return: | |
ndarray: dummy mask | |
""" | |
return np.random.randint(0, 2, size, dtype=np.uint8) | |
def dummy_raw_polygon_masks(size): | |
""" | |
Args: | |
size (tuple): expected shape of dummy masks, (N, H, W) | |
Return: | |
list[list[ndarray]]: dummy mask | |
""" | |
num_obj, height, width = size | |
polygons = [] | |
for _ in range(num_obj): | |
num_points = np.random.randint(5) * 2 + 6 | |
polygons.append([np.random.uniform(0, min(height, width), num_points)]) | |
return polygons | |
def dummy_bboxes(num, max_height, max_width): | |
x1y1 = np.random.randint(0, min(max_height // 2, max_width // 2), (num, 2)) | |
wh = np.random.randint(0, min(max_height // 2, max_width // 2), (num, 2)) | |
x2y2 = x1y1 + wh | |
return np.concatenate([x1y1, x2y2], axis=1).squeeze().astype(np.float32) | |
def test_bitmap_mask_init(): | |
# init with empty ndarray masks | |
raw_masks = np.empty((0, 28, 28), dtype=np.uint8) | |
bitmap_masks = BitmapMasks(raw_masks, 28, 28) | |
assert len(bitmap_masks) == 0 | |
assert bitmap_masks.height == 28 | |
assert bitmap_masks.width == 28 | |
# init with empty list masks | |
raw_masks = [] | |
bitmap_masks = BitmapMasks(raw_masks, 28, 28) | |
assert len(bitmap_masks) == 0 | |
assert bitmap_masks.height == 28 | |
assert bitmap_masks.width == 28 | |
# init with ndarray masks contain 3 instances | |
raw_masks = dummy_raw_bitmap_masks((3, 28, 28)) | |
bitmap_masks = BitmapMasks(raw_masks, 28, 28) | |
assert len(bitmap_masks) == 3 | |
assert bitmap_masks.height == 28 | |
assert bitmap_masks.width == 28 | |
# init with list masks contain 3 instances | |
raw_masks = [dummy_raw_bitmap_masks((28, 28)) for _ in range(3)] | |
bitmap_masks = BitmapMasks(raw_masks, 28, 28) | |
assert len(bitmap_masks) == 3 | |
assert bitmap_masks.height == 28 | |
assert bitmap_masks.width == 28 | |
# init with raw masks of unsupported type | |
with pytest.raises(AssertionError): | |
raw_masks = [[dummy_raw_bitmap_masks((28, 28))]] | |
BitmapMasks(raw_masks, 28, 28) | |
def test_bitmap_mask_rescale(): | |
# rescale with empty bitmap masks | |
raw_masks = dummy_raw_bitmap_masks((0, 28, 28)) | |
bitmap_masks = BitmapMasks(raw_masks, 28, 28) | |
rescaled_masks = bitmap_masks.rescale((56, 72)) | |
assert len(rescaled_masks) == 0 | |
assert rescaled_masks.height == 56 | |
assert rescaled_masks.width == 56 | |
# rescale with bitmap masks contain 1 instances | |
raw_masks = np.array([[[1, 0, 0, 0], [0, 1, 0, 1]]]) | |
bitmap_masks = BitmapMasks(raw_masks, 2, 4) | |
rescaled_masks = bitmap_masks.rescale((8, 8)) | |
assert len(rescaled_masks) == 1 | |
assert rescaled_masks.height == 4 | |
assert rescaled_masks.width == 8 | |
truth = np.array([[[1, 1, 0, 0, 0, 0, 0, 0], [1, 1, 0, 0, 0, 0, 0, 0], | |
[0, 0, 1, 1, 0, 0, 1, 1], [0, 0, 1, 1, 0, 0, 1, 1]]]) | |
assert (rescaled_masks.masks == truth).all() | |
def test_bitmap_mask_resize(): | |
# resize with empty bitmap masks | |
raw_masks = dummy_raw_bitmap_masks((0, 28, 28)) | |
bitmap_masks = BitmapMasks(raw_masks, 28, 28) | |
resized_masks = bitmap_masks.resize((56, 72)) | |
assert len(resized_masks) == 0 | |
assert resized_masks.height == 56 | |
assert resized_masks.width == 72 | |
# resize with bitmap masks contain 1 instances | |
raw_masks = np.diag(np.ones(4, dtype=np.uint8))[np.newaxis, ...] | |
bitmap_masks = BitmapMasks(raw_masks, 4, 4) | |
resized_masks = bitmap_masks.resize((8, 8)) | |
assert len(resized_masks) == 1 | |
assert resized_masks.height == 8 | |
assert resized_masks.width == 8 | |
truth = np.array([[[1, 1, 0, 0, 0, 0, 0, 0], [1, 1, 0, 0, 0, 0, 0, 0], | |
[0, 0, 1, 1, 0, 0, 0, 0], [0, 0, 1, 1, 0, 0, 0, 0], | |
[0, 0, 0, 0, 1, 1, 0, 0], [0, 0, 0, 0, 1, 1, 0, 0], | |
[0, 0, 0, 0, 0, 0, 1, 1], [0, 0, 0, 0, 0, 0, 1, 1]]]) | |
assert (resized_masks.masks == truth).all() | |
# resize to non-square | |
raw_masks = np.diag(np.ones(4, dtype=np.uint8))[np.newaxis, ...] | |
bitmap_masks = BitmapMasks(raw_masks, 4, 4) | |
resized_masks = bitmap_masks.resize((4, 8)) | |
assert len(resized_masks) == 1 | |
assert resized_masks.height == 4 | |
assert resized_masks.width == 8 | |
truth = np.array([[[1, 1, 0, 0, 0, 0, 0, 0], [0, 0, 1, 1, 0, 0, 0, 0], | |
[0, 0, 0, 0, 1, 1, 0, 0], [0, 0, 0, 0, 0, 0, 1, 1]]]) | |
assert (resized_masks.masks == truth).all() | |
def test_bitmap_mask_get_bboxes(): | |
# resize with empty bitmap masks | |
raw_masks = dummy_raw_bitmap_masks((0, 28, 28)) | |
bitmap_masks = BitmapMasks(raw_masks, 28, 28) | |
bboxes = bitmap_masks.get_bboxes() | |
assert len(bboxes) == 0 | |
# resize with bitmap masks contain 1 instances | |
raw_masks = np.array([[[0, 0, 0, 0, 0, 0, 0, 0], [0, 1, 1, 1, 0, 0, 0, 0], | |
[0, 0, 1, 1, 0, 0, 0, 0], [0, 0, 1, 1, 1, 0, 0, 0], | |
[0, 0, 1, 1, 1, 1, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0], | |
[0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, | |
0]]]) | |
bitmap_masks = BitmapMasks(raw_masks, 8, 8) | |
bboxes = bitmap_masks.get_bboxes() | |
assert len(bboxes) == 1 | |
truth = np.array([[1, 1, 6, 6]]) | |
assert (bboxes == truth).all() | |
# resize to non-square | |
raw_masks = np.array([[[1, 1, 0, 0, 0, 0, 0, 0], [0, 0, 1, 1, 0, 0, 0, 0], | |
[0, 0, 0, 0, 0, 1, 0, 0], [0, 0, 0, 0, 0, 0, 0, | |
0]]]) | |
bitmap_masks = BitmapMasks(raw_masks, 4, 8) | |
bboxes = bitmap_masks.get_bboxes() | |
truth = np.array([[0, 0, 6, 3]]) | |
assert (bboxes == truth).all() | |
def test_bitmap_mask_flip(): | |
# flip with empty bitmap masks | |
raw_masks = dummy_raw_bitmap_masks((0, 28, 28)) | |
bitmap_masks = BitmapMasks(raw_masks, 28, 28) | |
flipped_masks = bitmap_masks.flip(flip_direction='horizontal') | |
assert len(flipped_masks) == 0 | |
assert flipped_masks.height == 28 | |
assert flipped_masks.width == 28 | |
# horizontally flip with bitmap masks contain 3 instances | |
raw_masks = dummy_raw_bitmap_masks((3, 28, 28)) | |
bitmap_masks = BitmapMasks(raw_masks, 28, 28) | |
flipped_masks = bitmap_masks.flip(flip_direction='horizontal') | |
flipped_flipped_masks = flipped_masks.flip(flip_direction='horizontal') | |
assert flipped_masks.masks.shape == (3, 28, 28) | |
assert (bitmap_masks.masks == flipped_flipped_masks.masks).all() | |
assert (flipped_masks.masks == raw_masks[:, :, ::-1]).all() | |
# vertically flip with bitmap masks contain 3 instances | |
raw_masks = dummy_raw_bitmap_masks((3, 28, 28)) | |
bitmap_masks = BitmapMasks(raw_masks, 28, 28) | |
flipped_masks = bitmap_masks.flip(flip_direction='vertical') | |
flipped_flipped_masks = flipped_masks.flip(flip_direction='vertical') | |
assert len(flipped_masks) == 3 | |
assert flipped_masks.height == 28 | |
assert flipped_masks.width == 28 | |
assert (bitmap_masks.masks == flipped_flipped_masks.masks).all() | |
assert (flipped_masks.masks == raw_masks[:, ::-1, :]).all() | |
# diagonal flip with bitmap masks contain 3 instances | |
raw_masks = dummy_raw_bitmap_masks((3, 28, 28)) | |
bitmap_masks = BitmapMasks(raw_masks, 28, 28) | |
flipped_masks = bitmap_masks.flip(flip_direction='diagonal') | |
flipped_flipped_masks = flipped_masks.flip(flip_direction='diagonal') | |
assert len(flipped_masks) == 3 | |
assert flipped_masks.height == 28 | |
assert flipped_masks.width == 28 | |
assert (bitmap_masks.masks == flipped_flipped_masks.masks).all() | |
assert (flipped_masks.masks == raw_masks[:, ::-1, ::-1]).all() | |
def test_bitmap_mask_pad(): | |
# pad with empty bitmap masks | |
raw_masks = dummy_raw_bitmap_masks((0, 28, 28)) | |
bitmap_masks = BitmapMasks(raw_masks, 28, 28) | |
padded_masks = bitmap_masks.pad((56, 56)) | |
assert len(padded_masks) == 0 | |
assert padded_masks.height == 56 | |
assert padded_masks.width == 56 | |
# pad with bitmap masks contain 3 instances | |
raw_masks = dummy_raw_bitmap_masks((3, 28, 28)) | |
bitmap_masks = BitmapMasks(raw_masks, 28, 28) | |
padded_masks = bitmap_masks.pad((56, 56)) | |
assert len(padded_masks) == 3 | |
assert padded_masks.height == 56 | |
assert padded_masks.width == 56 | |
assert (padded_masks.masks[:, 28:, 28:] == 0).all() | |
def test_bitmap_mask_crop(): | |
# crop with empty bitmap masks | |
dummy_bbox = np.array([0, 10, 10, 27], dtype=np.int) | |
raw_masks = dummy_raw_bitmap_masks((0, 28, 28)) | |
bitmap_masks = BitmapMasks(raw_masks, 28, 28) | |
cropped_masks = bitmap_masks.crop(dummy_bbox) | |
assert len(cropped_masks) == 0 | |
assert cropped_masks.height == 17 | |
assert cropped_masks.width == 10 | |
# crop with bitmap masks contain 3 instances | |
raw_masks = dummy_raw_bitmap_masks((3, 28, 28)) | |
bitmap_masks = BitmapMasks(raw_masks, 28, 28) | |
cropped_masks = bitmap_masks.crop(dummy_bbox) | |
assert len(cropped_masks) == 3 | |
assert cropped_masks.height == 17 | |
assert cropped_masks.width == 10 | |
x1, y1, x2, y2 = dummy_bbox | |
assert (cropped_masks.masks == raw_masks[:, y1:y2, x1:x2]).all() | |
# crop with invalid bbox | |
with pytest.raises(AssertionError): | |
dummy_bbox = dummy_bboxes(2, 28, 28) | |
bitmap_masks.crop(dummy_bbox) | |
def test_bitmap_mask_crop_and_resize(): | |
dummy_bbox = dummy_bboxes(5, 28, 28) | |
inds = np.random.randint(0, 3, (5, )) | |
# crop and resize with empty bitmap masks | |
raw_masks = dummy_raw_bitmap_masks((0, 28, 28)) | |
bitmap_masks = BitmapMasks(raw_masks, 28, 28) | |
cropped_resized_masks = bitmap_masks.crop_and_resize( | |
dummy_bbox, (56, 56), inds) | |
assert len(cropped_resized_masks) == 0 | |
assert cropped_resized_masks.height == 56 | |
assert cropped_resized_masks.width == 56 | |
# crop and resize with bitmap masks contain 3 instances | |
raw_masks = dummy_raw_bitmap_masks((3, 28, 28)) | |
bitmap_masks = BitmapMasks(raw_masks, 28, 28) | |
cropped_resized_masks = bitmap_masks.crop_and_resize( | |
dummy_bbox, (56, 56), inds) | |
assert len(cropped_resized_masks) == 5 | |
assert cropped_resized_masks.height == 56 | |
assert cropped_resized_masks.width == 56 | |
def test_bitmap_mask_expand(): | |
# expand with empty bitmap masks | |
raw_masks = dummy_raw_bitmap_masks((0, 28, 28)) | |
bitmap_masks = BitmapMasks(raw_masks, 28, 28) | |
expanded_masks = bitmap_masks.expand(56, 56, 12, 14) | |
assert len(expanded_masks) == 0 | |
assert expanded_masks.height == 56 | |
assert expanded_masks.width == 56 | |
# expand with bitmap masks contain 3 instances | |
raw_masks = dummy_raw_bitmap_masks((3, 28, 28)) | |
bitmap_masks = BitmapMasks(raw_masks, 28, 28) | |
expanded_masks = bitmap_masks.expand(56, 56, 12, 14) | |
assert len(expanded_masks) == 3 | |
assert expanded_masks.height == 56 | |
assert expanded_masks.width == 56 | |
assert (expanded_masks.masks[:, :12, :14] == 0).all() | |
assert (expanded_masks.masks[:, 12 + 28:, 14 + 28:] == 0).all() | |
def test_bitmap_mask_area(): | |
# area of empty bitmap mask | |
raw_masks = dummy_raw_bitmap_masks((0, 28, 28)) | |
bitmap_masks = BitmapMasks(raw_masks, 28, 28) | |
assert bitmap_masks.areas.sum() == 0 | |
# area of bitmap masks contain 3 instances | |
raw_masks = dummy_raw_bitmap_masks((3, 28, 28)) | |
bitmap_masks = BitmapMasks(raw_masks, 28, 28) | |
areas = bitmap_masks.areas | |
assert len(areas) == 3 | |
assert (areas == raw_masks.sum((1, 2))).all() | |
def test_bitmap_mask_to_ndarray(): | |
# empty bitmap masks to ndarray | |
raw_masks = dummy_raw_bitmap_masks((0, 28, 28)) | |
bitmap_masks = BitmapMasks(raw_masks, 28, 28) | |
ndarray_masks = bitmap_masks.to_ndarray() | |
assert isinstance(ndarray_masks, np.ndarray) | |
assert ndarray_masks.shape == (0, 28, 28) | |
# bitmap masks contain 3 instances to ndarray | |
raw_masks = dummy_raw_bitmap_masks((3, 28, 28)) | |
bitmap_masks = BitmapMasks(raw_masks, 28, 28) | |
ndarray_masks = bitmap_masks.to_ndarray() | |
assert isinstance(ndarray_masks, np.ndarray) | |
assert ndarray_masks.shape == (3, 28, 28) | |
assert (ndarray_masks == raw_masks).all() | |
def test_bitmap_mask_to_tensor(): | |
# empty bitmap masks to tensor | |
raw_masks = dummy_raw_bitmap_masks((0, 28, 28)) | |
bitmap_masks = BitmapMasks(raw_masks, 28, 28) | |
tensor_masks = bitmap_masks.to_tensor(dtype=torch.uint8, device='cpu') | |
assert isinstance(tensor_masks, torch.Tensor) | |
assert tensor_masks.shape == (0, 28, 28) | |
# bitmap masks contain 3 instances to tensor | |
raw_masks = dummy_raw_bitmap_masks((3, 28, 28)) | |
bitmap_masks = BitmapMasks(raw_masks, 28, 28) | |
tensor_masks = bitmap_masks.to_tensor(dtype=torch.uint8, device='cpu') | |
assert isinstance(tensor_masks, torch.Tensor) | |
assert tensor_masks.shape == (3, 28, 28) | |
assert (tensor_masks.numpy() == raw_masks).all() | |
def test_bitmap_mask_index(): | |
raw_masks = dummy_raw_bitmap_masks((3, 28, 28)) | |
bitmap_masks = BitmapMasks(raw_masks, 28, 28) | |
assert (bitmap_masks[0].masks == raw_masks[0]).all() | |
assert (bitmap_masks[range(2)].masks == raw_masks[range(2)]).all() | |
def test_bitmap_mask_iter(): | |
raw_masks = dummy_raw_bitmap_masks((3, 28, 28)) | |
bitmap_masks = BitmapMasks(raw_masks, 28, 28) | |
for i, bitmap_mask in enumerate(bitmap_masks): | |
assert bitmap_mask.shape == (28, 28) | |
assert (bitmap_mask == raw_masks[i]).all() | |
def test_polygon_mask_init(): | |
# init with empty masks | |
raw_masks = [] | |
polygon_masks = BitmapMasks(raw_masks, 28, 28) | |
assert len(polygon_masks) == 0 | |
assert polygon_masks.height == 28 | |
assert polygon_masks.width == 28 | |
# init with masks contain 3 instances | |
raw_masks = dummy_raw_polygon_masks((3, 28, 28)) | |
polygon_masks = PolygonMasks(raw_masks, 28, 28) | |
assert isinstance(polygon_masks.masks, list) | |
assert isinstance(polygon_masks.masks[0], list) | |
assert isinstance(polygon_masks.masks[0][0], np.ndarray) | |
assert len(polygon_masks) == 3 | |
assert polygon_masks.height == 28 | |
assert polygon_masks.width == 28 | |
assert polygon_masks.to_ndarray().shape == (3, 28, 28) | |
# init with raw masks of unsupported type | |
with pytest.raises(AssertionError): | |
raw_masks = [[[]]] | |
PolygonMasks(raw_masks, 28, 28) | |
raw_masks = [dummy_raw_polygon_masks((3, 28, 28))] | |
PolygonMasks(raw_masks, 28, 28) | |
def test_polygon_mask_rescale(): | |
# rescale with empty polygon masks | |
raw_masks = dummy_raw_polygon_masks((0, 28, 28)) | |
polygon_masks = PolygonMasks(raw_masks, 28, 28) | |
rescaled_masks = polygon_masks.rescale((56, 72)) | |
assert len(rescaled_masks) == 0 | |
assert rescaled_masks.height == 56 | |
assert rescaled_masks.width == 56 | |
assert rescaled_masks.to_ndarray().shape == (0, 56, 56) | |
# rescale with polygon masks contain 3 instances | |
raw_masks = [[np.array([1, 1, 3, 1, 4, 3, 2, 4, 1, 3], dtype=np.float)]] | |
polygon_masks = PolygonMasks(raw_masks, 5, 5) | |
rescaled_masks = polygon_masks.rescale((12, 10)) | |
assert len(rescaled_masks) == 1 | |
assert rescaled_masks.height == 10 | |
assert rescaled_masks.width == 10 | |
assert rescaled_masks.to_ndarray().shape == (1, 10, 10) | |
truth = np.array( | |
[[0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], | |
[0, 0, 1, 1, 1, 1, 0, 0, 0, 0], [0, 0, 1, 1, 1, 1, 1, 0, 0, 0], | |
[0, 0, 1, 1, 1, 1, 1, 0, 0, 0], [0, 0, 1, 1, 1, 1, 1, 1, 0, 0], | |
[0, 0, 0, 1, 1, 1, 1, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0, 0, 0, 0], | |
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], | |
np.uint8) | |
assert (rescaled_masks.to_ndarray() == truth).all() | |
def test_polygon_mask_resize(): | |
# resize with empty polygon masks | |
raw_masks = dummy_raw_polygon_masks((0, 28, 28)) | |
polygon_masks = PolygonMasks(raw_masks, 28, 28) | |
resized_masks = polygon_masks.resize((56, 72)) | |
assert len(resized_masks) == 0 | |
assert resized_masks.height == 56 | |
assert resized_masks.width == 72 | |
assert resized_masks.to_ndarray().shape == (0, 56, 72) | |
assert len(resized_masks.get_bboxes()) == 0 | |
# resize with polygon masks contain 1 instance 1 part | |
raw_masks1 = [[np.array([1, 1, 3, 1, 4, 3, 2, 4, 1, 3], dtype=np.float)]] | |
polygon_masks1 = PolygonMasks(raw_masks1, 5, 5) | |
resized_masks1 = polygon_masks1.resize((10, 10)) | |
assert len(resized_masks1) == 1 | |
assert resized_masks1.height == 10 | |
assert resized_masks1.width == 10 | |
assert resized_masks1.to_ndarray().shape == (1, 10, 10) | |
truth1 = np.array( | |
[[0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], | |
[0, 0, 1, 1, 1, 1, 0, 0, 0, 0], [0, 0, 1, 1, 1, 1, 1, 0, 0, 0], | |
[0, 0, 1, 1, 1, 1, 1, 0, 0, 0], [0, 0, 1, 1, 1, 1, 1, 1, 0, 0], | |
[0, 0, 0, 1, 1, 1, 1, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0, 0, 0, 0], | |
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], | |
np.uint8) | |
assert (resized_masks1.to_ndarray() == truth1).all() | |
bboxes = resized_masks1.get_bboxes() | |
bbox_truth = np.array([[2, 2, 8, 8]]) | |
assert (bboxes == bbox_truth).all() | |
# resize with polygon masks contain 1 instance 2 part | |
raw_masks2 = [[ | |
np.array([0., 0., 1., 0., 1., 1.]), | |
np.array([1., 1., 2., 1., 2., 2., 1., 2.]) | |
]] | |
polygon_masks2 = PolygonMasks(raw_masks2, 3, 3) | |
resized_masks2 = polygon_masks2.resize((6, 6)) | |
assert len(resized_masks2) == 1 | |
assert resized_masks2.height == 6 | |
assert resized_masks2.width == 6 | |
assert resized_masks2.to_ndarray().shape == (1, 6, 6) | |
truth2 = np.array( | |
[[0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0], [0, 0, 1, 1, 0, 0], | |
[0, 0, 1, 1, 0, 0], [0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0]], np.uint8) | |
assert (resized_masks2.to_ndarray() == truth2).all() | |
# resize with polygon masks contain 2 instances | |
raw_masks3 = [raw_masks1[0], raw_masks2[0]] | |
polygon_masks3 = PolygonMasks(raw_masks3, 5, 5) | |
resized_masks3 = polygon_masks3.resize((10, 10)) | |
assert len(resized_masks3) == 2 | |
assert resized_masks3.height == 10 | |
assert resized_masks3.width == 10 | |
assert resized_masks3.to_ndarray().shape == (2, 10, 10) | |
truth3 = np.stack([truth1, np.pad(truth2, ((0, 4), (0, 4)), 'constant')]) | |
assert (resized_masks3.to_ndarray() == truth3).all() | |
# resize to non-square | |
raw_masks4 = [[np.array([1, 1, 3, 1, 4, 3, 2, 4, 1, 3], dtype=np.float)]] | |
polygon_masks4 = PolygonMasks(raw_masks4, 5, 5) | |
resized_masks4 = polygon_masks4.resize((5, 10)) | |
assert len(resized_masks4) == 1 | |
assert resized_masks4.height == 5 | |
assert resized_masks4.width == 10 | |
assert resized_masks4.to_ndarray().shape == (1, 5, 10) | |
truth4 = np.array( | |
[[0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 1, 1, 1, 1, 0, 0, 0], | |
[0, 0, 1, 1, 1, 1, 1, 1, 0, 0], [0, 0, 0, 1, 1, 1, 0, 0, 0, 0], | |
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], np.uint8) | |
assert (resized_masks4.to_ndarray() == truth4).all() | |
def test_polygon_mask_flip(): | |
# flip with empty polygon masks | |
raw_masks = dummy_raw_polygon_masks((0, 28, 28)) | |
polygon_masks = PolygonMasks(raw_masks, 28, 28) | |
flipped_masks = polygon_masks.flip(flip_direction='horizontal') | |
assert len(flipped_masks) == 0 | |
assert flipped_masks.height == 28 | |
assert flipped_masks.width == 28 | |
assert flipped_masks.to_ndarray().shape == (0, 28, 28) | |
# TODO: fixed flip correctness checking after v2.0_coord is merged | |
# horizontally flip with polygon masks contain 3 instances | |
raw_masks = dummy_raw_polygon_masks((3, 28, 28)) | |
polygon_masks = PolygonMasks(raw_masks, 28, 28) | |
flipped_masks = polygon_masks.flip(flip_direction='horizontal') | |
flipped_flipped_masks = flipped_masks.flip(flip_direction='horizontal') | |
assert len(flipped_masks) == 3 | |
assert flipped_masks.height == 28 | |
assert flipped_masks.width == 28 | |
assert flipped_masks.to_ndarray().shape == (3, 28, 28) | |
assert (polygon_masks.to_ndarray() == flipped_flipped_masks.to_ndarray() | |
).all() | |
# vertically flip with polygon masks contain 3 instances | |
raw_masks = dummy_raw_polygon_masks((3, 28, 28)) | |
polygon_masks = PolygonMasks(raw_masks, 28, 28) | |
flipped_masks = polygon_masks.flip(flip_direction='vertical') | |
flipped_flipped_masks = flipped_masks.flip(flip_direction='vertical') | |
assert len(flipped_masks) == 3 | |
assert flipped_masks.height == 28 | |
assert flipped_masks.width == 28 | |
assert flipped_masks.to_ndarray().shape == (3, 28, 28) | |
assert (polygon_masks.to_ndarray() == flipped_flipped_masks.to_ndarray() | |
).all() | |
# diagonal flip with polygon masks contain 3 instances | |
raw_masks = dummy_raw_polygon_masks((3, 28, 28)) | |
polygon_masks = PolygonMasks(raw_masks, 28, 28) | |
flipped_masks = polygon_masks.flip(flip_direction='diagonal') | |
flipped_flipped_masks = flipped_masks.flip(flip_direction='diagonal') | |
assert len(flipped_masks) == 3 | |
assert flipped_masks.height == 28 | |
assert flipped_masks.width == 28 | |
assert flipped_masks.to_ndarray().shape == (3, 28, 28) | |
assert (polygon_masks.to_ndarray() == flipped_flipped_masks.to_ndarray() | |
).all() | |
def test_polygon_mask_crop(): | |
dummy_bbox = np.array([0, 10, 10, 27], dtype=np.int) | |
# crop with empty polygon masks | |
raw_masks = dummy_raw_polygon_masks((0, 28, 28)) | |
polygon_masks = PolygonMasks(raw_masks, 28, 28) | |
cropped_masks = polygon_masks.crop(dummy_bbox) | |
assert len(cropped_masks) == 0 | |
assert cropped_masks.height == 17 | |
assert cropped_masks.width == 10 | |
assert cropped_masks.to_ndarray().shape == (0, 17, 10) | |
# crop with polygon masks contain 1 instances | |
raw_masks = [[np.array([1., 3., 5., 1., 5., 6., 1, 6])]] | |
polygon_masks = PolygonMasks(raw_masks, 7, 7) | |
bbox = np.array([0, 0, 3, 4]) | |
cropped_masks = polygon_masks.crop(bbox) | |
assert len(cropped_masks) == 1 | |
assert cropped_masks.height == 4 | |
assert cropped_masks.width == 3 | |
assert cropped_masks.to_ndarray().shape == (1, 4, 3) | |
truth = np.array([[0, 0, 0], [0, 0, 0], [0, 0, 1], [0, 1, 1]]) | |
assert (cropped_masks.to_ndarray() == truth).all() | |
# crop with invalid bbox | |
with pytest.raises(AssertionError): | |
dummy_bbox = dummy_bboxes(2, 28, 28) | |
polygon_masks.crop(dummy_bbox) | |
def test_polygon_mask_pad(): | |
# pad with empty polygon masks | |
raw_masks = dummy_raw_polygon_masks((0, 28, 28)) | |
polygon_masks = PolygonMasks(raw_masks, 28, 28) | |
padded_masks = polygon_masks.pad((56, 56)) | |
assert len(padded_masks) == 0 | |
assert padded_masks.height == 56 | |
assert padded_masks.width == 56 | |
assert padded_masks.to_ndarray().shape == (0, 56, 56) | |
# pad with polygon masks contain 3 instances | |
raw_masks = dummy_raw_polygon_masks((3, 28, 28)) | |
polygon_masks = PolygonMasks(raw_masks, 28, 28) | |
padded_masks = polygon_masks.pad((56, 56)) | |
assert len(padded_masks) == 3 | |
assert padded_masks.height == 56 | |
assert padded_masks.width == 56 | |
assert padded_masks.to_ndarray().shape == (3, 56, 56) | |
assert (padded_masks.to_ndarray()[:, 28:, 28:] == 0).all() | |
def test_polygon_mask_expand(): | |
with pytest.raises(NotImplementedError): | |
raw_masks = dummy_raw_polygon_masks((0, 28, 28)) | |
polygon_masks = PolygonMasks(raw_masks, 28, 28) | |
polygon_masks.expand(56, 56, 10, 17) | |
def test_polygon_mask_crop_and_resize(): | |
dummy_bbox = dummy_bboxes(5, 28, 28) | |
inds = np.random.randint(0, 3, (5, )) | |
# crop and resize with empty polygon masks | |
raw_masks = dummy_raw_polygon_masks((0, 28, 28)) | |
polygon_masks = PolygonMasks(raw_masks, 28, 28) | |
cropped_resized_masks = polygon_masks.crop_and_resize( | |
dummy_bbox, (56, 56), inds) | |
assert len(cropped_resized_masks) == 0 | |
assert cropped_resized_masks.height == 56 | |
assert cropped_resized_masks.width == 56 | |
assert cropped_resized_masks.to_ndarray().shape == (0, 56, 56) | |
# crop and resize with polygon masks contain 3 instances | |
raw_masks = dummy_raw_polygon_masks((3, 28, 28)) | |
polygon_masks = PolygonMasks(raw_masks, 28, 28) | |
cropped_resized_masks = polygon_masks.crop_and_resize( | |
dummy_bbox, (56, 56), inds) | |
assert len(cropped_resized_masks) == 5 | |
assert cropped_resized_masks.height == 56 | |
assert cropped_resized_masks.width == 56 | |
assert cropped_resized_masks.to_ndarray().shape == (5, 56, 56) | |
def test_polygon_mask_area(): | |
# area of empty polygon masks | |
raw_masks = dummy_raw_polygon_masks((0, 28, 28)) | |
polygon_masks = PolygonMasks(raw_masks, 28, 28) | |
assert polygon_masks.areas.sum() == 0 | |
# area of polygon masks contain 1 instance | |
# here we hack a case that the gap between the area of bitmap and polygon | |
# is minor | |
raw_masks = [[np.array([1, 1, 5, 1, 3, 4])]] | |
polygon_masks = PolygonMasks(raw_masks, 6, 6) | |
polygon_area = polygon_masks.areas | |
bitmap_area = polygon_masks.to_bitmap().areas | |
assert len(polygon_area) == 1 | |
assert np.isclose(polygon_area, bitmap_area).all() | |
def test_polygon_mask_to_bitmap(): | |
# polygon masks contain 3 instances to bitmap | |
raw_masks = dummy_raw_polygon_masks((3, 28, 28)) | |
polygon_masks = PolygonMasks(raw_masks, 28, 28) | |
bitmap_masks = polygon_masks.to_bitmap() | |
assert (polygon_masks.to_ndarray() == bitmap_masks.to_ndarray()).all() | |
def test_polygon_mask_to_ndarray(): | |
# empty polygon masks to ndarray | |
raw_masks = dummy_raw_polygon_masks((0, 28, 28)) | |
polygon_masks = PolygonMasks(raw_masks, 28, 28) | |
ndarray_masks = polygon_masks.to_ndarray() | |
assert isinstance(ndarray_masks, np.ndarray) | |
assert ndarray_masks.shape == (0, 28, 28) | |
# polygon masks contain 3 instances to ndarray | |
raw_masks = dummy_raw_polygon_masks((3, 28, 28)) | |
polygon_masks = PolygonMasks(raw_masks, 28, 28) | |
ndarray_masks = polygon_masks.to_ndarray() | |
assert isinstance(ndarray_masks, np.ndarray) | |
assert ndarray_masks.shape == (3, 28, 28) | |
def test_polygon_to_tensor(): | |
# empty polygon masks to tensor | |
raw_masks = dummy_raw_polygon_masks((0, 28, 28)) | |
polygon_masks = PolygonMasks(raw_masks, 28, 28) | |
tensor_masks = polygon_masks.to_tensor(dtype=torch.uint8, device='cpu') | |
assert isinstance(tensor_masks, torch.Tensor) | |
assert tensor_masks.shape == (0, 28, 28) | |
# polygon masks contain 3 instances to tensor | |
raw_masks = dummy_raw_polygon_masks((3, 28, 28)) | |
polygon_masks = PolygonMasks(raw_masks, 28, 28) | |
tensor_masks = polygon_masks.to_tensor(dtype=torch.uint8, device='cpu') | |
assert isinstance(tensor_masks, torch.Tensor) | |
assert tensor_masks.shape == (3, 28, 28) | |
assert (tensor_masks.numpy() == polygon_masks.to_ndarray()).all() | |
def test_polygon_mask_index(): | |
raw_masks = dummy_raw_polygon_masks((3, 28, 28)) | |
polygon_masks = PolygonMasks(raw_masks, 28, 28) | |
# index by integer | |
polygon_masks[0] | |
# index by list | |
polygon_masks[[0, 1]] | |
# index by ndarray | |
polygon_masks[np.asarray([0, 1])] | |
with pytest.raises(ValueError): | |
# invalid index | |
polygon_masks[torch.Tensor([1, 2])] | |
def test_polygon_mask_iter(): | |
raw_masks = dummy_raw_polygon_masks((3, 28, 28)) | |
polygon_masks = PolygonMasks(raw_masks, 28, 28) | |
for i, polygon_mask in enumerate(polygon_masks): | |
assert np.equal(polygon_mask, raw_masks[i]).all() | |
def test_mask2bbox(): | |
# no instance | |
masks = torch.zeros((1, 20, 15), dtype=torch.bool) | |
bboxes_empty_gt = torch.tensor([[0, 0, 0, 0]]).float() | |
bboxes = mask2bbox(masks) | |
assert torch.allclose(bboxes_empty_gt.float(), bboxes) | |
# the entire mask is an instance | |
bboxes_full_gt = torch.tensor([[0, 0, 15, 20]]).float() | |
masks = torch.ones((1, 20, 15), dtype=torch.bool) | |
bboxes = mask2bbox(masks) | |
assert torch.allclose(bboxes_full_gt, bboxes) | |
# a pentagon-shaped instance | |
bboxes_gt = torch.tensor([[2, 2, 7, 6]]).float() | |
masks = torch.zeros((1, 20, 15), dtype=torch.bool) | |
masks[0, 2, 4] = True | |
masks[0, 3, 3:6] = True | |
masks[0, 4, 2:7] = True | |
masks[0, 5, 2:7] = True | |
bboxes = mask2bbox(masks) | |
assert torch.allclose(bboxes_gt, bboxes) | |