Spaces:
Build error
Build error
# Copyright (c) OpenMMLab. All rights reserved. | |
"""pytest tests/test_loss_compatibility.py.""" | |
import copy | |
from os.path import dirname, exists, join | |
import numpy as np | |
import pytest | |
import torch | |
def _get_config_directory(): | |
"""Find the predefined detector config directory.""" | |
try: | |
# Assume we are running in the source mmdetection repo | |
repo_dpath = dirname(dirname(dirname(__file__))) | |
except NameError: | |
# For IPython development when this __file__ is not defined | |
import mmdet | |
repo_dpath = dirname(dirname(mmdet.__file__)) | |
config_dpath = join(repo_dpath, 'configs') | |
if not exists(config_dpath): | |
raise Exception('Cannot find config path') | |
return config_dpath | |
def _get_config_module(fname): | |
"""Load a configuration as a python module.""" | |
from mmcv import Config | |
config_dpath = _get_config_directory() | |
config_fpath = join(config_dpath, fname) | |
config_mod = Config.fromfile(config_fpath) | |
return config_mod | |
def _get_detector_cfg(fname): | |
"""Grab configs necessary to create a detector. | |
These are deep copied to allow for safe modification of parameters without | |
influencing other tests. | |
""" | |
config = _get_config_module(fname) | |
model = copy.deepcopy(config.model) | |
return model | |
def test_bbox_loss_compatibility(loss_bbox): | |
"""Test loss_bbox compatibility. | |
Using Faster R-CNN as a sample, modifying the loss function in the config | |
file to verify the compatibility of Loss APIS | |
""" | |
# Faster R-CNN config dict | |
config_path = '_base_/models/faster_rcnn_r50_fpn.py' | |
cfg_model = _get_detector_cfg(config_path) | |
input_shape = (1, 3, 256, 256) | |
mm_inputs = _demo_mm_inputs(input_shape, num_items=[10]) | |
imgs = mm_inputs.pop('imgs') | |
img_metas = mm_inputs.pop('img_metas') | |
if 'IoULoss' in loss_bbox['type']: | |
cfg_model.roi_head.bbox_head.reg_decoded_bbox = True | |
cfg_model.roi_head.bbox_head.loss_bbox = loss_bbox | |
from mmdet.models import build_detector | |
detector = build_detector(cfg_model) | |
loss = detector.forward(imgs, img_metas, return_loss=True, **mm_inputs) | |
assert isinstance(loss, dict) | |
loss, _ = detector._parse_losses(loss) | |
assert float(loss.item()) > 0 | |
def test_cls_loss_compatibility(loss_cls): | |
"""Test loss_cls compatibility. | |
Using Faster R-CNN as a sample, modifying the loss function in the config | |
file to verify the compatibility of Loss APIS | |
""" | |
# Faster R-CNN config dict | |
config_path = '_base_/models/faster_rcnn_r50_fpn.py' | |
cfg_model = _get_detector_cfg(config_path) | |
input_shape = (1, 3, 256, 256) | |
mm_inputs = _demo_mm_inputs(input_shape, num_items=[10]) | |
imgs = mm_inputs.pop('imgs') | |
img_metas = mm_inputs.pop('img_metas') | |
# verify class loss function compatibility | |
# for loss_cls in loss_clses: | |
cfg_model.roi_head.bbox_head.loss_cls = loss_cls | |
from mmdet.models import build_detector | |
detector = build_detector(cfg_model) | |
loss = detector.forward(imgs, img_metas, return_loss=True, **mm_inputs) | |
assert isinstance(loss, dict) | |
loss, _ = detector._parse_losses(loss) | |
assert float(loss.item()) > 0 | |
def _demo_mm_inputs(input_shape=(1, 3, 300, 300), | |
num_items=None, num_classes=10, | |
with_semantic=False): # yapf: disable | |
"""Create a superset of inputs needed to run test or train batches. | |
Args: | |
input_shape (tuple): | |
input batch dimensions | |
num_items (None | List[int]): | |
specifies the number of boxes in each batch item | |
num_classes (int): | |
number of different labels a box might have | |
""" | |
from mmdet.core import BitmapMasks | |
(N, C, H, W) = input_shape | |
rng = np.random.RandomState(0) | |
imgs = rng.rand(*input_shape) | |
img_metas = [{ | |
'img_shape': (H, W, C), | |
'ori_shape': (H, W, C), | |
'pad_shape': (H, W, C), | |
'filename': '<demo>.png', | |
'scale_factor': np.array([1.1, 1.2, 1.1, 1.2]), | |
'flip': False, | |
'flip_direction': None, | |
} for _ in range(N)] | |
gt_bboxes = [] | |
gt_labels = [] | |
gt_masks = [] | |
for batch_idx in range(N): | |
if num_items is None: | |
num_boxes = rng.randint(1, 10) | |
else: | |
num_boxes = num_items[batch_idx] | |
cx, cy, bw, bh = rng.rand(num_boxes, 4).T | |
tl_x = ((cx * W) - (W * bw / 2)).clip(0, W) | |
tl_y = ((cy * H) - (H * bh / 2)).clip(0, H) | |
br_x = ((cx * W) + (W * bw / 2)).clip(0, W) | |
br_y = ((cy * H) + (H * bh / 2)).clip(0, H) | |
boxes = np.vstack([tl_x, tl_y, br_x, br_y]).T | |
class_idxs = rng.randint(1, num_classes, size=num_boxes) | |
gt_bboxes.append(torch.FloatTensor(boxes)) | |
gt_labels.append(torch.LongTensor(class_idxs)) | |
mask = np.random.randint(0, 2, (len(boxes), H, W), dtype=np.uint8) | |
gt_masks.append(BitmapMasks(mask, H, W)) | |
mm_inputs = { | |
'imgs': torch.FloatTensor(imgs).requires_grad_(True), | |
'img_metas': img_metas, | |
'gt_bboxes': gt_bboxes, | |
'gt_labels': gt_labels, | |
'gt_bboxes_ignore': None, | |
'gt_masks': gt_masks, | |
} | |
if with_semantic: | |
# assume gt_semantic_seg using scale 1/8 of the img | |
gt_semantic_seg = np.random.randint( | |
0, num_classes, (1, 1, H // 8, W // 8), dtype=np.uint8) | |
mm_inputs.update( | |
{'gt_semantic_seg': torch.ByteTensor(gt_semantic_seg)}) | |
return mm_inputs | |