Spaces:
Build error
Build error
# Copyright (c) OpenMMLab. All rights reserved. | |
import logging | |
import os.path as osp | |
from argparse import ArgumentParser | |
from mmcv import Config | |
from mmdet.apis import inference_detector, init_detector, show_result_pyplot | |
from mmdet.utils import get_root_logger | |
def parse_args(): | |
parser = ArgumentParser() | |
parser.add_argument('config', help='test config file path') | |
parser.add_argument('checkpoint_root', help='Checkpoint file root path') | |
parser.add_argument('--img', default='demo/demo.jpg', help='Image file') | |
parser.add_argument('--aug', action='store_true', help='aug test') | |
parser.add_argument('--model-name', help='model name to inference') | |
parser.add_argument('--show', action='store_true', help='show results') | |
parser.add_argument( | |
'--wait-time', | |
type=float, | |
default=1, | |
help='the interval of show (s), 0 is block') | |
parser.add_argument( | |
'--device', default='cuda:0', help='Device used for inference') | |
parser.add_argument( | |
'--score-thr', type=float, default=0.3, help='bbox score threshold') | |
args = parser.parse_args() | |
return args | |
def inference_model(config_name, checkpoint, args, logger=None): | |
cfg = Config.fromfile(config_name) | |
if args.aug: | |
if 'flip' in cfg.data.test.pipeline[1]: | |
cfg.data.test.pipeline[1].flip = True | |
else: | |
if logger is not None: | |
logger.error(f'{config_name}: unable to start aug test') | |
else: | |
print(f'{config_name}: unable to start aug test', flush=True) | |
model = init_detector(cfg, checkpoint, device=args.device) | |
# test a single image | |
result = inference_detector(model, args.img) | |
# show the results | |
if args.show: | |
show_result_pyplot( | |
model, | |
args.img, | |
result, | |
score_thr=args.score_thr, | |
wait_time=args.wait_time) | |
return result | |
# Sample test whether the inference code is correct | |
def main(args): | |
config = Config.fromfile(args.config) | |
# test single model | |
if args.model_name: | |
if args.model_name in config: | |
model_infos = config[args.model_name] | |
if not isinstance(model_infos, list): | |
model_infos = [model_infos] | |
model_info = model_infos[0] | |
config_name = model_info['config'].strip() | |
print(f'processing: {config_name}', flush=True) | |
checkpoint = osp.join(args.checkpoint_root, | |
model_info['checkpoint'].strip()) | |
# build the model from a config file and a checkpoint file | |
inference_model(config_name, checkpoint, args) | |
return | |
else: | |
raise RuntimeError('model name input error.') | |
# test all model | |
logger = get_root_logger( | |
log_file='benchmark_test_image.log', log_level=logging.ERROR) | |
for model_key in config: | |
model_infos = config[model_key] | |
if not isinstance(model_infos, list): | |
model_infos = [model_infos] | |
for model_info in model_infos: | |
print('processing: ', model_info['config'], flush=True) | |
config_name = model_info['config'].strip() | |
checkpoint = osp.join(args.checkpoint_root, | |
model_info['checkpoint'].strip()) | |
try: | |
# build the model from a config file and a checkpoint file | |
inference_model(config_name, checkpoint, args, logger) | |
except Exception as e: | |
logger.error(f'{config_name} " : {repr(e)}') | |
if __name__ == '__main__': | |
args = parse_args() | |
main(args) | |