chatgpt version
Browse files
app.py
CHANGED
@@ -1,26 +1,19 @@
|
|
1 |
import gradio as gr
|
2 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
|
4 |
-
#
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
|
9 |
-
|
10 |
-
|
11 |
-
input_ids = tokenizer.encode(input_text, return_tensors="pt")
|
12 |
-
output = model.generate(input_ids, max_length=1000, do_sample=True, top_p=0.92, top_k=0, num_return_sequences=1)
|
13 |
-
response = tokenizer.decode(output[0], skip_special_tokens=True)
|
14 |
-
return response
|
15 |
|
16 |
# Create the Gradio interface
|
17 |
-
|
|
|
|
|
|
|
|
|
18 |
|
19 |
-
|
20 |
-
|
21 |
-
chatbot_input = gr.Textbox(placeholder="Type your message here...")
|
22 |
-
chatbot_output = gr.Textbox(label="Chatbot Response")
|
23 |
-
chat_btn = gr.Button("Send")
|
24 |
-
chat_btn.click(chatbot, inputs=chatbot_input, outputs=chatbot_output)
|
25 |
-
|
26 |
-
chat_interface.launch()
|
|
|
1 |
import gradio as gr
|
|
|
2 |
|
3 |
+
# Mock LLM function for demonstration. Replace this with your actual LLM call.
|
4 |
+
def ask_llm(question):
|
5 |
+
# Here you would normally interact with an LLM. For demonstration, we'll just echo the question.
|
6 |
+
return f"LLM Response: {question}"
|
7 |
|
8 |
+
def chat_with_llm(user_input):
|
9 |
+
return ask_llm(user_input)
|
|
|
|
|
|
|
|
|
10 |
|
11 |
# Create the Gradio interface
|
12 |
+
iface = gr.Interface(fn=chat_with_llm,
|
13 |
+
inputs=gr.inputs.Textbox(lines=2, placeholder="Ask me anything!"),
|
14 |
+
outputs="text",
|
15 |
+
title="Chat with LLM",
|
16 |
+
description="Type your question below and get responses from an LLM.")
|
17 |
|
18 |
+
# Launch the app
|
19 |
+
iface.launch()
|
|
|
|
|
|
|
|
|
|
|
|