Spaces:
Runtime error
Runtime error
import spaces | |
import torch | |
import gradio as gr | |
import yt_dlp as youtube_dl | |
from transformers import pipeline | |
from transformers.pipelines.audio_utils import ffmpeg_read | |
import tempfile | |
import os | |
MODEL_NAME = "openai/whisper-large-v3" | |
BATCH_SIZE = 8 | |
FILE_LIMIT_MB = 1000 | |
YT_LENGTH_LIMIT_S = 3600 # limit to 1 hour YouTube files | |
device = 0 if torch.cuda.is_available() else "cpu" | |
pipe = pipeline( | |
task="automatic-speech-recognition", | |
model=MODEL_NAME, | |
chunk_length_s=30, | |
device=device, | |
) | |
def transcribe(inputs, task): | |
if inputs is None: | |
raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting your request.") | |
result = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": task}, return_timestamps="word") | |
text = result["text"] | |
timestamps = result["chunks"] # each chunk contains the word and its timestamps | |
word_timestamps = [] | |
for chunk in timestamps: | |
for word_info in chunk["words"]: | |
word_timestamps.append(f"{word_info['word']} [{word_info['start']}-{word_info['end']}]") | |
return "\n".join(word_timestamps) | |
def yt_transcribe(yt_url, task, max_filesize=75.0): | |
html_embed_str = _return_yt_html_embed(yt_url) | |
with tempfile.TemporaryDirectory() as tmpdirname: | |
filepath = os.path.join(tmpdirname, "video.mp4") | |
download_yt_audio(yt_url, filepath) | |
with open(filepath, "rb") as f: | |
inputs = f.read() | |
inputs = ffmpeg_read(inputs, pipe.feature_extractor.sampling_rate) | |
inputs = {"array": inputs, "sampling_rate": pipe.feature_extractor.sampling_rate} | |
result = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": task}, return_timestamps="word") | |
text = result["text"] | |
timestamps = result["chunks"] | |
word_timestamps = [] | |
for chunk in timestamps: | |
for word_info in chunk["words"]: | |
word_timestamps.append(f"{word_info['word']} [{word_info['start']}-{word_info['end']}]") | |
return html_embed_str, "\n".join(word_timestamps) | |
demo = gr.Blocks() | |
mf_transcribe = gr.Interface( | |
fn=transcribe, | |
inputs=[ | |
gr.Audio(sources="microphone", type="filepath"), | |
gr.Radio(["transcribe", "translate"], label="Task", value="transcribe"), | |
], | |
outputs=["text", "text"], # Output both text and timestamps | |
title="Whisper Large V3: Transcribe Audio", | |
description=( | |
"Transcribe long-form microphone or audio inputs with the click of a button! Demo uses the" | |
f" checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to transcribe audio files" | |
" of arbitrary length." | |
), | |
allow_flagging="never", | |
) | |
file_transcribe = gr.Interface( | |
fn=transcribe, | |
inputs=[ | |
gr.Audio(sources="upload", type="filepath", label="Audio file"), | |
gr.Radio(["transcribe", "translate"], label="Task", value="transcribe"), | |
], | |
outputs=["text", "text"], # Output both text and timestamps | |
title="Whisper Large V3: Transcribe Audio", | |
description=( | |
"Transcribe long-form microphone or audio inputs with the click of a button! Demo uses the" | |
f" checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to transcribe audio files" | |
" of arbitrary length." | |
), | |
allow_flagging="never", | |
) | |
yt_transcribe = gr.Interface( | |
fn=yt_transcribe, | |
inputs=[ | |
gr.Textbox(lines=1, placeholder="Paste the URL to a YouTube video here", label="YouTube URL"), | |
gr.Radio(["transcribe", "translate"], label="Task", value="transcribe") | |
], | |
outputs=["html", "text", "text"], # Output both text and timestamps | |
title="Whisper Large V3: Transcribe YouTube", | |
description=( | |
"Transcribe long-form YouTube videos with the click of a button! Demo uses the checkpoint" | |
f" [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to transcribe video files of" | |
" arbitrary length." | |
), | |
allow_flagging="never", | |
) | |
with demo: | |
gr.TabbedInterface([mf_transcribe, file_transcribe, yt_transcribe], ["Microphone", "Audio file", "YouTube"]) | |
demo.queue().launch() | |