danielsapit's picture
Update app.py
7b0d035
raw
history blame
6.76 kB
import gradio as gr
import os.path
import numpy as np
from collections import OrderedDict
import torch
import cv2
from PIL import Image, ImageOps
import utils_image as util
from network_fbcnn import FBCNN as net
import requests
for model_path in ['fbcnn_gray.pth','fbcnn_color.pth']:
if os.path.exists(path):
print(f'loading model from {model_path}')
else:
os.makedirs(os.path.dirname(model_path), exist_ok=True)
url = 'https://github.com/jiaxi-jiang/FBCNN/releases/download/v1.0/{}'.format(os.path.basename(model_path))
r = requests.get(url, allow_redirects=True)
open(model_path, 'wb').write(r.content)
def inference(input_img, is_gray, input_quality, enable_zoom, zoom, x_shift, y_shift, state):
if is_gray:
n_channels = 1 # set 1 for grayscale image, set 3 for color image
model_name = 'fbcnn_gray.pth'
else:
n_channels = 3 # set 1 for grayscale image, set 3 for color image
model_name = 'fbcnn_color.pth'
nc = [64,128,256,512]
nb = 4
input_quality = 100 - input_quality
#model_pool = '/FBCNN/model_zoo' # fixed
#model_path = os.path.join(model_pool, model_name)
model_path = model_name
"""
if os.path.exists(model_path):
print(f'loading model from {model_path}')
else:
os.makedirs(os.path.dirname(model_path), exist_ok=True)
url = 'https://github.com/jiaxi-jiang/FBCNN/releases/download/v1.0/{}'.format(os.path.basename(model_path))
r = requests.get(url, allow_redirects=True)
open(model_path, 'wb').write(r.content)"""
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# ----------------------------------------
# load model
# ----------------------------------------
if (not enable_zoom) or (state[1] is None):
model = net(in_nc=n_channels, out_nc=n_channels, nc=nc, nb=nb, act_mode='R')
model.load_state_dict(torch.load(model_path), strict=True)
model.eval()
for k, v in model.named_parameters():
v.requires_grad = False
model = model.to(device)
test_results = OrderedDict()
test_results['psnr'] = []
test_results['ssim'] = []
test_results['psnrb'] = []
# ------------------------------------
# (1) img_L
# ------------------------------------
if n_channels == 1:
open_cv_image = Image.fromarray(input_img)
open_cv_image = ImageOps.grayscale(open_cv_image)
open_cv_image = np.array(open_cv_image) # PIL to open cv image
img = np.expand_dims(open_cv_image, axis=2) # HxWx1
elif n_channels == 3:
open_cv_image = np.array(input_img) # PIL to open cv image
if open_cv_image.ndim == 2:
open_cv_image = cv2.cvtColor(open_cv_image, cv2.COLOR_GRAY2RGB) # GGG
else:
open_cv_image = cv2.cvtColor(open_cv_image, cv2.COLOR_BGR2RGB) # RGB
img_L = util.uint2tensor4(open_cv_image)
img_L = img_L.to(device)
# ------------------------------------
# (2) img_E
# ------------------------------------
img_E,QF = model(img_L)
QF = 1- QF
img_E = util.tensor2single(img_E)
img_E = util.single2uint(img_E)
qf_input = torch.tensor([[1-input_quality/100]]).cuda() if device == torch.device('cuda') else torch.tensor([[1-input_quality/100]])
img_E,QF = model(img_L, qf_input)
QF = 1- QF
img_E = util.tensor2single(img_E)
img_E = util.single2uint(img_E)
if img_E.ndim == 3:
img_E = img_E[:, :, [2, 1, 0]]
if (state[1] is not None) and enable_zoom:
img_E = state[1]
out_img = Image.fromarray(img_E)
out_img_w, out_img_h = out_img.size # output image size
zoom = zoom/100
x_shift = x_shift/100
y_shift = y_shift/100
zoom_w, zoom_h = out_img_w*zoom, out_img_h*zoom
zoom_left, zoom_right = int((out_img_w - zoom_w)*x_shift), int(zoom_w + (out_img_w - zoom_w)*x_shift)
zoom_top, zoom_bottom = int((out_img_h - zoom_h)*y_shift), int(zoom_h + (out_img_h - zoom_h)*y_shift)
if (state[0] is None) or not enable_zoom:
in_img = Image.fromarray(input_img)
state[0] = input_img
else:
in_img = Image.fromarray(state[0])
in_img = in_img.crop((zoom_left, zoom_top, zoom_right, zoom_bottom))
in_img = in_img.resize((int(zoom_w/zoom), int(zoom_h/zoom)), Image.NEAREST)
out_img = out_img.crop((zoom_left, zoom_top, zoom_right, zoom_bottom))
out_img = out_img.resize((int(zoom_w/zoom), int(zoom_h/zoom)), Image.NEAREST)
return img_E, in_img, out_img, [state[0],img_E]
interface = gr.Interface(
fn = inference,
inputs = [gr.inputs.Image(),
gr.inputs.Checkbox(label="Grayscale (Check this if your image is grayscale)"),
gr.inputs.Slider(minimum=1, maximum=100, step=1, label="Intensity (Higher = more JPEG artifact removal)"),
gr.inputs.Checkbox(default=False, label="Edit Zoom preview \n(This is optional. "
"Check this after the image result is loaded to edit zoom parameters\n"
"without processing the input image.)"),
gr.inputs.Slider(minimum=10, maximum=100, step=1, default=50, label="Zoom Image \n"
"(Use this to see the image quality up close. \n"
"100 = original size)"),
gr.inputs.Slider(minimum=0, maximum=100, step=1, label="Zoom preview horizontal shift \n"
"(Increase to shift to the right)"),
gr.inputs.Slider(minimum=0, maximum=100, step=1, label="Zoom preview vertical shift \n"
"(Increase to shift downwards)"),
gr.inputs.State(default=[None,None])
],
outputs = [gr.outputs.Image(label="Result"),
gr.outputs.Image(label="Before:"),
gr.outputs.Image(label="After:"),
"state"],
examples = [["doraemon.jpg",False,60,False,42,50,50],
["tomandjerry.jpg",False,60,False,40,57,44],
["somepanda.jpg",True,100,False,30,8,24],
["cemetry.jpg",False,70,False,20,44,77],
["michelangelo_david.jpg",True,30,False,12,53,27],
["elon_musk.jpg",False,45,False,15,33,30]],
allow_flagging=False
).launch(enable_queue=True)