Update app.py
Browse files
app.py
CHANGED
|
@@ -7,7 +7,7 @@ import gradio as gr
|
|
| 7 |
from transformers import pipeline, AutoTokenizer, AutoModelForSequenceClassification
|
| 8 |
from sentence_transformers import SentenceTransformer, util
|
| 9 |
|
| 10 |
-
#
|
| 11 |
def ensure_spacy():
|
| 12 |
try:
|
| 13 |
return spacy.load("en_core_web_sm")
|
|
@@ -25,22 +25,22 @@ def ensure_nltk():
|
|
| 25 |
ensure_nltk()
|
| 26 |
nlp = ensure_spacy()
|
| 27 |
|
| 28 |
-
# ---------- models ----------
|
| 29 |
sbert_model = SentenceTransformer("all-MiniLM-L6-v2")
|
| 30 |
bert_sentiment = pipeline("sentiment-analysis", model="distilbert-base-uncased-finetuned-sst-2-english")
|
|
|
|
| 31 |
emotion_model_name = "j-hartmann/emotion-english-distilroberta-base"
|
| 32 |
emotion_tokenizer = AutoTokenizer.from_pretrained(emotion_model_name)
|
| 33 |
emotion_model = AutoModelForSequenceClassification.from_pretrained(emotion_model_name)
|
| 34 |
|
| 35 |
-
#
|
| 36 |
-
CSV_PATH_PLUS = "la matrice plus.csv" # pathways + colors +
|
| 37 |
CSV_PATH_COLOR = "la matrice.csv" # color lexicon
|
| 38 |
|
| 39 |
SEQUENCE_ALIASES = {
|
| 40 |
"Direct": "direct",
|
| 41 |
-
"
|
| 42 |
"Knot": "knot",
|
| 43 |
-
"
|
| 44 |
"Pain": "pain",
|
| 45 |
"Prayer": "prayer",
|
| 46 |
"Precise": "precise",
|
|
@@ -50,12 +50,11 @@ SEQUENCE_ALIASES = {
|
|
| 50 |
"Sad": "sad",
|
| 51 |
}
|
| 52 |
|
| 53 |
-
|
| 54 |
SEQUENCE_IMAGE_FILES = {
|
| 55 |
"direct": "direct pathway.png",
|
| 56 |
"feminine": "fem pathway.png",
|
| 57 |
"knot": "knot pathway.png",
|
| 58 |
-
"
|
| 59 |
"pain": "pain pathway.png",
|
| 60 |
"prayer": "prayer pathway.png",
|
| 61 |
"precise": "precise pathway.png",
|
|
@@ -65,7 +64,6 @@ SEQUENCE_IMAGE_FILES = {
|
|
| 65 |
"sad": "sad pathway.png"
|
| 66 |
}
|
| 67 |
|
| 68 |
-
# GNH dictionaries
|
| 69 |
GNH_DOMAINS: Dict[str, str] = {
|
| 70 |
"Mental Wellness": "mental health, emotional clarity, peace of mind",
|
| 71 |
"Social Wellness": "relationships, community, friendship, social harmony",
|
|
@@ -98,7 +96,21 @@ GNH_COLORS: Dict[str, str] = {
|
|
| 98 |
"Cultural Diversity": "#9370db",
|
| 99 |
}
|
| 100 |
|
| 101 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 102 |
def load_pathway_info(csv_path_plus: str):
|
| 103 |
df = pd.read_csv(csv_path_plus)
|
| 104 |
keys = set(SEQUENCE_ALIASES.values())
|
|
@@ -107,40 +119,26 @@ def load_pathway_info(csv_path_plus: str):
|
|
| 107 |
seq_to_colors: Dict[str, List[str]] = {}
|
| 108 |
seq_phrase: Dict[str, str] = {}
|
| 109 |
|
|
|
|
| 110 |
cols_for_phrase = [c for c in df.columns if c not in ("color", "r", "g", "b")]
|
| 111 |
for _, row in rows.iterrows():
|
| 112 |
key = str(row["color"]).strip().lower()
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
seq_to_colors[key] = list(dict.fromkeys(colors)) # dedupe
|
| 117 |
|
| 118 |
vals = []
|
| 119 |
for c in cols_for_phrase:
|
| 120 |
v = row.get(c)
|
| 121 |
if pd.notna(v):
|
| 122 |
-
|
| 123 |
-
if
|
| 124 |
-
vals.append(
|
| 125 |
-
phrase = " ".join(" ".join(vals).split())
|
| 126 |
seq_phrase[key] = phrase
|
| 127 |
|
| 128 |
return seq_to_colors, seq_phrase
|
| 129 |
|
| 130 |
-
SEQ_TO_COLORS, SEQ_PHRASE = load_pathway_info(CSV_PATH_PLUS)
|
| 131 |
-
|
| 132 |
-
# ---------- load color lexicon ----------
|
| 133 |
-
def _find_col(df: pd.DataFrame, candidates: List[str]) -> str | None:
|
| 134 |
-
names = {c.lower(): c for c in df.columns}
|
| 135 |
-
for c in candidates:
|
| 136 |
-
if c.lower() in names:
|
| 137 |
-
return names[c.lower()]
|
| 138 |
-
for want in candidates:
|
| 139 |
-
for lc, orig in names.items():
|
| 140 |
-
if want.replace(" ", "").replace("-", "") in lc.replace(" ", "").replace("-", ""):
|
| 141 |
-
return orig
|
| 142 |
-
return None
|
| 143 |
-
|
| 144 |
def _split_words(s: str) -> List[str]:
|
| 145 |
if not isinstance(s, str): return []
|
| 146 |
parts = re.split(r"[,\;/\|\s]+", s.strip())
|
|
@@ -164,13 +162,14 @@ def load_color_lexicon(csv_path_color: str):
|
|
| 164 |
}
|
| 165 |
return lex
|
| 166 |
|
|
|
|
| 167 |
COLOR_LEX = load_color_lexicon(CSV_PATH_COLOR)
|
| 168 |
|
| 169 |
def sequence_to_image_path(seq_key: str) -> str | None:
|
| 170 |
fname = SEQUENCE_IMAGE_FILES.get(seq_key)
|
| 171 |
return fname if (fname and os.path.exists(fname)) else None
|
| 172 |
|
| 173 |
-
#
|
| 174 |
def encode_text(t: str):
|
| 175 |
return sbert_model.encode(t, convert_to_tensor=True)
|
| 176 |
|
|
@@ -218,19 +217,16 @@ def indicators_plot(indicators: Dict[str, float]):
|
|
| 218 |
plt.tight_layout()
|
| 219 |
return fig
|
| 220 |
|
| 221 |
-
#
|
| 222 |
-
|
| 223 |
-
|
| 224 |
-
def join_lex_words(color: str) -> str:
|
| 225 |
d = COLOR_LEX.get(color.lower(), {})
|
| 226 |
-
|
| 227 |
-
return " ".join(dict.fromkeys(words))
|
| 228 |
|
| 229 |
def nearest_gnh_domain_for_color(color: str) -> Tuple[str, float]:
|
| 230 |
-
|
| 231 |
-
if not
|
| 232 |
return "Mental Wellness", 0.0
|
| 233 |
-
v = encode_text(
|
| 234 |
best, best_sim = None, -1.0
|
| 235 |
for dom, desc in GNH_DOMAINS.items():
|
| 236 |
sim = float(util.cos_sim(v, encode_text(desc)).item())
|
|
@@ -238,108 +234,148 @@ def nearest_gnh_domain_for_color(color: str) -> Tuple[str, float]:
|
|
| 238 |
best, best_sim = dom, sim
|
| 239 |
return best or "Mental Wellness", best_sim
|
| 240 |
|
| 241 |
-
def chip_html_for(color: str, mode: str, max_words: int = 4) -> str:
|
| 242 |
-
if not color: return ""
|
| 243 |
-
if mode.lower().startswith("gnh"):
|
| 244 |
-
domain, sim = nearest_gnh_domain_for_color(color)
|
| 245 |
-
hex_color = GNH_COLORS.get(domain, "#cccccc")
|
| 246 |
-
dot = f"<span style='display:inline-block;width:12px;height:12px;border-radius:50%;background:{hex_color};margin-right:6px;border:1px solid #999;vertical-align:middle'></span>"
|
| 247 |
-
pill = f"<span style='display:inline-block;margin:2px 6px;padding:2px 8px;border-radius:12px;background:#eee;font-size:12px'>{domain} · {sim:.2f}</span>"
|
| 248 |
-
return f"<div style='margin-bottom:6px'>{dot}<b>{color.capitalize()}</b>{pill}</div>"
|
| 249 |
-
# lexicon modes
|
| 250 |
-
key = "english" if mode.lower() == "english" else ("matrice1" if mode.lower()=="matrice1" else "matrice")
|
| 251 |
-
words = COLOR_LEX.get(color.lower(), {}).get(key, [])[:max_words]
|
| 252 |
-
pills = "".join(
|
| 253 |
-
f"<span style='display:inline-block;margin:2px 6px;padding:2px 8px;border-radius:12px;background:#eee;font-size:12px'>{w}</span>"
|
| 254 |
-
for w in words
|
| 255 |
-
)
|
| 256 |
-
dot = f"<span style='display:inline-block;width:12px;height:12px;border-radius:50%;background:{color};margin-right:6px;border:1px solid #999;vertical-align:middle'></span>"
|
| 257 |
-
return f"<div style='margin-bottom:6px'>{dot}<b>{color.capitalize()}</b>{pills}</div>"
|
| 258 |
-
|
| 259 |
-
def colors_for_sequence(seq_key: str) -> List[str]:
|
| 260 |
-
return SEQ_TO_COLORS.get(seq_key, []) # 2–8 colors
|
| 261 |
-
|
| 262 |
def labels_for_mode(colors: List[str], mode: str) -> List[str]:
|
| 263 |
if mode.lower().startswith("gnh"):
|
| 264 |
-
|
| 265 |
-
for c in colors:
|
| 266 |
-
d, _ = nearest_gnh_domain_for_color(c)
|
| 267 |
-
labs.append(d)
|
| 268 |
-
return labs
|
| 269 |
return [c.capitalize() for c in colors]
|
| 270 |
|
| 271 |
-
|
| 272 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 273 |
|
| 274 |
def update_prompt_ui(seq_choice: str, word_mode: str):
|
| 275 |
key = SEQUENCE_ALIASES.get(seq_choice)
|
| 276 |
colors = colors_for_sequence(key)
|
| 277 |
labels = labels_for_mode(colors, word_mode)
|
|
|
|
| 278 |
|
| 279 |
-
|
| 280 |
-
|
| 281 |
-
# Return updates for chips + each color input (visibility, label, placeholder)
|
| 282 |
-
inputs_updates = []
|
| 283 |
for i in range(MAX_COLORS):
|
| 284 |
if i < len(colors):
|
| 285 |
lab = labels[i] if i < len(labels) else f"Input {i+1}"
|
| 286 |
-
ph =
|
| 287 |
-
|
| 288 |
else:
|
| 289 |
-
|
| 290 |
-
return (
|
| 291 |
|
| 292 |
-
#
|
| 293 |
-
def
|
| 294 |
"""
|
| 295 |
-
|
| 296 |
-
|
| 297 |
-
|
| 298 |
-
- analyze sentiment/emotion + GNH on (text + updated phrase)
|
| 299 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 300 |
key = SEQUENCE_ALIASES.get(seq_choice)
|
| 301 |
if key not in SEQ_PHRASE:
|
| 302 |
-
return (5.0, "neutral (0.0)", 5.0, "
|
| 303 |
-
|
| 304 |
-
|
| 305 |
-
sentiment = score_sentiment(text or "")
|
| 306 |
-
emotion, emo_conf = classify_emotion(text or "")
|
| 307 |
-
accomplishment = score_accomplishment(text or "")
|
| 308 |
|
| 309 |
colors = colors_for_sequence(key)
|
| 310 |
labels = labels_for_mode(colors, word_mode)
|
| 311 |
-
|
| 312 |
-
# Updated phrase = base phrase + each "{Label}: {input}"
|
| 313 |
base_phrase = SEQ_PHRASE.get(key, "")
|
| 314 |
-
|
| 315 |
-
|
| 316 |
-
|
| 317 |
-
|
| 318 |
-
|
| 319 |
-
|
| 320 |
-
|
| 321 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 322 |
fig = indicators_plot(indicators)
|
| 323 |
top5 = list(indicators.items())[:5]
|
| 324 |
top5_str = "\n".join(f"{k}: {v}" for k, v in top5)
|
| 325 |
|
| 326 |
-
cols = SEQ_TO_COLORS.get(key, [])
|
| 327 |
-
emo_str = f"{emotion} ({emo_conf:.3f})"
|
| 328 |
-
meta = f"{key} | colors: {', '.join(cols) if cols else '—'}"
|
| 329 |
img_path = sequence_to_image_path(key)
|
|
|
|
|
|
|
| 330 |
|
| 331 |
-
# keep
|
| 332 |
-
|
| 333 |
|
| 334 |
return (
|
| 335 |
sentiment, emo_str, accomplishment,
|
| 336 |
updated_phrase, top5_str, fig, img_path, meta,
|
| 337 |
-
*
|
| 338 |
)
|
| 339 |
|
| 340 |
-
#
|
| 341 |
SEQ_CHOICES = list(SEQUENCE_ALIASES.keys())
|
| 342 |
-
DEFAULT_SEQ = "
|
| 343 |
|
| 344 |
with gr.Blocks(title="RGB Root Matriz Color Plotter") as demo:
|
| 345 |
gr.Markdown("## RGB Root Matriz Color Plotter\n"
|
|
@@ -351,51 +387,42 @@ with gr.Blocks(title="RGB Root Matriz Color Plotter") as demo:
|
|
| 351 |
|
| 352 |
with gr.Row():
|
| 353 |
seq = gr.Dropdown(choices=SEQ_CHOICES, value=DEFAULT_SEQ, label="Pathway")
|
| 354 |
-
word_mode = gr.Radio(choices=WORD_MODES, value="
|
| 355 |
|
| 356 |
-
|
| 357 |
|
| 358 |
-
|
| 359 |
-
color_inputs = []
|
| 360 |
for i in range(MAX_COLORS):
|
| 361 |
-
|
| 362 |
-
color_inputs.append(tb)
|
| 363 |
|
| 364 |
run = gr.Button("Generate Pathway Analysis", variant="primary")
|
| 365 |
|
| 366 |
-
# outputs
|
| 367 |
with gr.Row():
|
| 368 |
sent = gr.Number(label="Sentiment (1–10)")
|
| 369 |
emo = gr.Text(label="Emotion")
|
| 370 |
acc = gr.Number(label="Accomplishment (1–10)")
|
| 371 |
|
| 372 |
with gr.Row():
|
| 373 |
-
phrase_out = gr.Text(label="Updated Pathway Phrase (with your meanings)")
|
| 374 |
gnh_top = gr.Text(label="Top GNH Indicators (Top 5)")
|
| 375 |
|
| 376 |
gnh_plot = gr.Plot(label="GNH Similarity")
|
| 377 |
img_out = gr.Image(label="Pathway image", type="filepath")
|
| 378 |
meta_out = gr.Text(label="Chosen pathway / colors")
|
| 379 |
|
| 380 |
-
# events
|
| 381 |
def _update_ui(seq_choice, mode):
|
| 382 |
return update_prompt_ui(seq_choice, mode)
|
| 383 |
|
| 384 |
-
seq.change(fn=_update_ui, inputs=[seq, word_mode], outputs=[
|
| 385 |
-
word_mode.change(fn=_update_ui, inputs=[seq, word_mode], outputs=[
|
| 386 |
|
| 387 |
run.click(
|
| 388 |
fn=analyze,
|
| 389 |
-
inputs=[inp, seq, word_mode, *
|
| 390 |
-
outputs=[sent, emo, acc, phrase_out, gnh_top, gnh_plot, img_out, meta_out,
|
| 391 |
)
|
| 392 |
|
| 393 |
-
|
| 394 |
-
demo.load(
|
| 395 |
-
fn=_update_ui,
|
| 396 |
-
inputs=[seq, word_mode],
|
| 397 |
-
outputs=[chips_block, *color_inputs]
|
| 398 |
-
)
|
| 399 |
|
| 400 |
if __name__ == "__main__":
|
| 401 |
demo.launch()
|
|
|
|
| 7 |
from transformers import pipeline, AutoTokenizer, AutoModelForSequenceClassification
|
| 8 |
from sentence_transformers import SentenceTransformer, util
|
| 9 |
|
| 10 |
+
# -------------------- setup --------------------
|
| 11 |
def ensure_spacy():
|
| 12 |
try:
|
| 13 |
return spacy.load("en_core_web_sm")
|
|
|
|
| 25 |
ensure_nltk()
|
| 26 |
nlp = ensure_spacy()
|
| 27 |
|
|
|
|
| 28 |
sbert_model = SentenceTransformer("all-MiniLM-L6-v2")
|
| 29 |
bert_sentiment = pipeline("sentiment-analysis", model="distilbert-base-uncased-finetuned-sst-2-english")
|
| 30 |
+
|
| 31 |
emotion_model_name = "j-hartmann/emotion-english-distilroberta-base"
|
| 32 |
emotion_tokenizer = AutoTokenizer.from_pretrained(emotion_model_name)
|
| 33 |
emotion_model = AutoModelForSequenceClassification.from_pretrained(emotion_model_name)
|
| 34 |
|
| 35 |
+
# -------------------- constants --------------------
|
| 36 |
+
CSV_PATH_PLUS = "la matrice plus.csv" # pathways + colors + template words
|
| 37 |
CSV_PATH_COLOR = "la matrice.csv" # color lexicon
|
| 38 |
|
| 39 |
SEQUENCE_ALIASES = {
|
| 40 |
"Direct": "direct",
|
| 41 |
+
"Feminine": "feminine",
|
| 42 |
"Knot": "knot",
|
| 43 |
+
"Masculine": "masculine",
|
| 44 |
"Pain": "pain",
|
| 45 |
"Prayer": "prayer",
|
| 46 |
"Precise": "precise",
|
|
|
|
| 50 |
"Sad": "sad",
|
| 51 |
}
|
| 52 |
|
|
|
|
| 53 |
SEQUENCE_IMAGE_FILES = {
|
| 54 |
"direct": "direct pathway.png",
|
| 55 |
"feminine": "fem pathway.png",
|
| 56 |
"knot": "knot pathway.png",
|
| 57 |
+
"masculine": "masc pathway.png",
|
| 58 |
"pain": "pain pathway.png",
|
| 59 |
"prayer": "prayer pathway.png",
|
| 60 |
"precise": "precise pathway.png",
|
|
|
|
| 64 |
"sad": "sad pathway.png"
|
| 65 |
}
|
| 66 |
|
|
|
|
| 67 |
GNH_DOMAINS: Dict[str, str] = {
|
| 68 |
"Mental Wellness": "mental health, emotional clarity, peace of mind",
|
| 69 |
"Social Wellness": "relationships, community, friendship, social harmony",
|
|
|
|
| 96 |
"Cultural Diversity": "#9370db",
|
| 97 |
}
|
| 98 |
|
| 99 |
+
WORD_MODES = ["Matrice1", "Matrice", "English", "GNH Indicators"]
|
| 100 |
+
MAX_COLORS = 8
|
| 101 |
+
|
| 102 |
+
# -------------------- loaders --------------------
|
| 103 |
+
def _find_col(df: pd.DataFrame, candidates: List[str]) -> str | None:
|
| 104 |
+
names = {c.lower(): c for c in df.columns}
|
| 105 |
+
for c in candidates:
|
| 106 |
+
if c.lower() in names: return names[c.lower()]
|
| 107 |
+
for want in candidates:
|
| 108 |
+
ww = want.replace(" ", "").replace("-", "")
|
| 109 |
+
for lc, orig in names.items():
|
| 110 |
+
if ww in lc.replace(" ", "").replace("-", ""):
|
| 111 |
+
return orig
|
| 112 |
+
return None
|
| 113 |
+
|
| 114 |
def load_pathway_info(csv_path_plus: str):
|
| 115 |
df = pd.read_csv(csv_path_plus)
|
| 116 |
keys = set(SEQUENCE_ALIASES.values())
|
|
|
|
| 119 |
seq_to_colors: Dict[str, List[str]] = {}
|
| 120 |
seq_phrase: Dict[str, str] = {}
|
| 121 |
|
| 122 |
+
# colors live in 'r' (list), template = concat of the other fields
|
| 123 |
cols_for_phrase = [c for c in df.columns if c not in ("color", "r", "g", "b")]
|
| 124 |
for _, row in rows.iterrows():
|
| 125 |
key = str(row["color"]).strip().lower()
|
| 126 |
+
color_list = str(row.get("r", "") or "")
|
| 127 |
+
colors = [c.strip().lower() for c in re.split(r"[,\s]+", color_list) if c.strip()]
|
| 128 |
+
seq_to_colors[key] = list(dict.fromkeys(colors))
|
|
|
|
| 129 |
|
| 130 |
vals = []
|
| 131 |
for c in cols_for_phrase:
|
| 132 |
v = row.get(c)
|
| 133 |
if pd.notna(v):
|
| 134 |
+
s = str(v).strip()
|
| 135 |
+
if s and s.lower() != "nan":
|
| 136 |
+
vals.append(s)
|
| 137 |
+
phrase = " ".join(" ".join(vals).split()) # base template
|
| 138 |
seq_phrase[key] = phrase
|
| 139 |
|
| 140 |
return seq_to_colors, seq_phrase
|
| 141 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 142 |
def _split_words(s: str) -> List[str]:
|
| 143 |
if not isinstance(s, str): return []
|
| 144 |
parts = re.split(r"[,\;/\|\s]+", s.strip())
|
|
|
|
| 162 |
}
|
| 163 |
return lex
|
| 164 |
|
| 165 |
+
SEQ_TO_COLORS, SEQ_PHRASE = load_pathway_info(CSV_PATH_PLUS)
|
| 166 |
COLOR_LEX = load_color_lexicon(CSV_PATH_COLOR)
|
| 167 |
|
| 168 |
def sequence_to_image_path(seq_key: str) -> str | None:
|
| 169 |
fname = SEQUENCE_IMAGE_FILES.get(seq_key)
|
| 170 |
return fname if (fname and os.path.exists(fname)) else None
|
| 171 |
|
| 172 |
+
# -------------------- NLP helpers --------------------
|
| 173 |
def encode_text(t: str):
|
| 174 |
return sbert_model.encode(t, convert_to_tensor=True)
|
| 175 |
|
|
|
|
| 217 |
plt.tight_layout()
|
| 218 |
return fig
|
| 219 |
|
| 220 |
+
# -------------------- prompt building (legible placeholders) --------------------
|
| 221 |
+
def join_all_words(color: str) -> List[str]:
|
|
|
|
|
|
|
| 222 |
d = COLOR_LEX.get(color.lower(), {})
|
| 223 |
+
return list(dict.fromkeys(d.get("matrice1", []) + d.get("matrice", []) + d.get("english", [])))
|
|
|
|
| 224 |
|
| 225 |
def nearest_gnh_domain_for_color(color: str) -> Tuple[str, float]:
|
| 226 |
+
words = " ".join(join_all_words(color))
|
| 227 |
+
if not words:
|
| 228 |
return "Mental Wellness", 0.0
|
| 229 |
+
v = encode_text(words)
|
| 230 |
best, best_sim = None, -1.0
|
| 231 |
for dom, desc in GNH_DOMAINS.items():
|
| 232 |
sim = float(util.cos_sim(v, encode_text(desc)).item())
|
|
|
|
| 234 |
best, best_sim = dom, sim
|
| 235 |
return best or "Mental Wellness", best_sim
|
| 236 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 237 |
def labels_for_mode(colors: List[str], mode: str) -> List[str]:
|
| 238 |
if mode.lower().startswith("gnh"):
|
| 239 |
+
return [nearest_gnh_domain_for_color(c)[0] for c in colors]
|
|
|
|
|
|
|
|
|
|
|
|
|
| 240 |
return [c.capitalize() for c in colors]
|
| 241 |
|
| 242 |
+
def placeholder_for(color: str, mode: str) -> str:
|
| 243 |
+
"""
|
| 244 |
+
Always show a meaningful placeholder driven by the chosen mode.
|
| 245 |
+
"""
|
| 246 |
+
color_lc = color.lower()
|
| 247 |
+
if mode.lower().startswith("gnh"):
|
| 248 |
+
dom, _ = nearest_gnh_domain_for_color(color_lc)
|
| 249 |
+
return f"{dom}: {GNH_DOMAINS.get(dom, '')}"
|
| 250 |
+
|
| 251 |
+
# map mode -> CSV column key
|
| 252 |
+
mode_key = {
|
| 253 |
+
"matrice1": "matrice1",
|
| 254 |
+
"matrice": "matrice",
|
| 255 |
+
"english": "english",
|
| 256 |
+
}.get(mode.lower(), "matrice")
|
| 257 |
+
|
| 258 |
+
lex = COLOR_LEX.get(color_lc, {})
|
| 259 |
+
primary = lex.get(mode_key, [])
|
| 260 |
+
|
| 261 |
+
# If the chosen column has entries, use them.
|
| 262 |
+
if primary:
|
| 263 |
+
return ", ".join(primary[:12])
|
| 264 |
+
|
| 265 |
+
# Otherwise, try the other two lexicon columns (ordered).
|
| 266 |
+
fallback_order = [k for k in ("matrice1", "matrice", "english") if k != mode_key]
|
| 267 |
+
for fb in fallback_order:
|
| 268 |
+
words = lex.get(fb, [])
|
| 269 |
+
if words:
|
| 270 |
+
label = "Matrice1" if fb == "matrice1" else ("Matrice" if fb == "matrice" else "English")
|
| 271 |
+
return f"(from {label}) " + ", ".join(words[:12])
|
| 272 |
+
|
| 273 |
+
# Final fallback: mapped GNH domain description (still a “meaning”, just not from lexicon).
|
| 274 |
+
dom, _ = nearest_gnh_domain_for_color(color_lc)
|
| 275 |
+
return f"(mapped GNH) {dom}: {GNH_DOMAINS.get(dom, '')}"
|
| 276 |
+
|
| 277 |
+
|
| 278 |
+
def simple_color_legend(colors: List[str]) -> str:
|
| 279 |
+
if not colors:
|
| 280 |
+
return "No prompts available for this pathway."
|
| 281 |
+
parts = []
|
| 282 |
+
for c in colors:
|
| 283 |
+
dot = f"<span style='display:inline-block;width:10px;height:10px;border-radius:50%;background:{c};margin-right:8px;border:1px solid #999;vertical-align:middle'></span>"
|
| 284 |
+
parts.append(f"<div style='margin:4px 0'>{dot}<b>{c.capitalize()}</b></div>")
|
| 285 |
+
return "<div>" + "".join(parts) + "</div>"
|
| 286 |
+
|
| 287 |
+
def colors_for_sequence(seq_key: str) -> List[str]:
|
| 288 |
+
return SEQ_TO_COLORS.get(seq_key, [])
|
| 289 |
|
| 290 |
def update_prompt_ui(seq_choice: str, word_mode: str):
|
| 291 |
key = SEQUENCE_ALIASES.get(seq_choice)
|
| 292 |
colors = colors_for_sequence(key)
|
| 293 |
labels = labels_for_mode(colors, word_mode)
|
| 294 |
+
legend_html = simple_color_legend(colors)
|
| 295 |
|
| 296 |
+
updates = []
|
|
|
|
|
|
|
|
|
|
| 297 |
for i in range(MAX_COLORS):
|
| 298 |
if i < len(colors):
|
| 299 |
lab = labels[i] if i < len(labels) else f"Input {i+1}"
|
| 300 |
+
ph = placeholder_for(colors[i], word_mode)
|
| 301 |
+
updates.append(gr.update(visible=True, label=f"{lab} meaning", placeholder=ph, value=""))
|
| 302 |
else:
|
| 303 |
+
updates.append(gr.update(visible=False, value="", label=f"Input {i+1}", placeholder="—"))
|
| 304 |
+
return (legend_html, *updates)
|
| 305 |
|
| 306 |
+
# -------------------- template replacement --------------------
|
| 307 |
+
def render_phrase_template(base_phrase: str, colors: List[str], labels: List[str], inputs: List[str]) -> str:
|
| 308 |
"""
|
| 309 |
+
Replace occurrences of '<color>-pathway' (any spacing/hyphen variants) with the user's phrase for that color.
|
| 310 |
+
If user left it empty, keep the label (color name or mapped GNH indicator).
|
| 311 |
+
Finally, append a compact legend ' // Label: input'.
|
|
|
|
| 312 |
"""
|
| 313 |
+
text = base_phrase or ""
|
| 314 |
+
# build replacement map color -> replacement text
|
| 315 |
+
rep: Dict[str, str] = {}
|
| 316 |
+
for color, label, user in zip(colors, labels, inputs):
|
| 317 |
+
use = user.strip() if isinstance(user, str) and user.strip() else label
|
| 318 |
+
rep[color.lower()] = use
|
| 319 |
+
|
| 320 |
+
# replace each token case-insensitively
|
| 321 |
+
for color, replacement in rep.items():
|
| 322 |
+
# match 'brown-pathway', 'brown pathway', 'Brown- Pathway', etc.
|
| 323 |
+
pattern = re.compile(rf"\b{re.escape(color)}\s*-\s*pathway\b", re.IGNORECASE)
|
| 324 |
+
text = pattern.sub(replacement, text)
|
| 325 |
+
|
| 326 |
+
# if the template had no tokens, fall back to readable construction:
|
| 327 |
+
# "use A to B the C of D as a new E" is preserved, but we still append meanings
|
| 328 |
+
suffix_parts = []
|
| 329 |
+
for color, label, user in zip(colors, labels, inputs):
|
| 330 |
+
if isinstance(user, str) and user.strip():
|
| 331 |
+
suffix_parts.append(f"{label}: {user.strip()}")
|
| 332 |
+
if suffix_parts:
|
| 333 |
+
text = (text + " // " + " // ".join(suffix_parts)).strip()
|
| 334 |
+
|
| 335 |
+
return text
|
| 336 |
+
|
| 337 |
+
# -------------------- main analysis --------------------
|
| 338 |
+
def analyze(text: str, seq_choice: str, word_mode: str, *color_inputs):
|
| 339 |
key = SEQUENCE_ALIASES.get(seq_choice)
|
| 340 |
if key not in SEQ_PHRASE:
|
| 341 |
+
return (5.0, "neutral (0.0)", 5.0, "Choose a valid pathway.", "{}", None, None, f"{seq_choice} (unavailable)",
|
| 342 |
+
*update_prompt_ui(seq_choice, word_mode))
|
|
|
|
|
|
|
|
|
|
|
|
|
| 343 |
|
| 344 |
colors = colors_for_sequence(key)
|
| 345 |
labels = labels_for_mode(colors, word_mode)
|
|
|
|
|
|
|
| 346 |
base_phrase = SEQ_PHRASE.get(key, "")
|
| 347 |
+
|
| 348 |
+
# updated phrase with template replacement
|
| 349 |
+
user_inputs = list(color_inputs)[:len(colors)]
|
| 350 |
+
updated_phrase = render_phrase_template(base_phrase, colors, labels, user_inputs)
|
| 351 |
+
|
| 352 |
+
# analysis on original + updated
|
| 353 |
+
combined_text = " ".join([t for t in [text, updated_phrase] if t and t.strip()])
|
| 354 |
+
sentiment = score_sentiment(combined_text)
|
| 355 |
+
emotion, emo_conf = classify_emotion(combined_text)
|
| 356 |
+
accomplishment = score_accomplishment(combined_text)
|
| 357 |
+
|
| 358 |
+
indicators = semantic_indicator_mapping(combined_text, sentiment_score=sentiment)
|
| 359 |
fig = indicators_plot(indicators)
|
| 360 |
top5 = list(indicators.items())[:5]
|
| 361 |
top5_str = "\n".join(f"{k}: {v}" for k, v in top5)
|
| 362 |
|
|
|
|
|
|
|
|
|
|
| 363 |
img_path = sequence_to_image_path(key)
|
| 364 |
+
meta = f"{key} | colors: {', '.join(colors) if colors else '—'}"
|
| 365 |
+
emo_str = f"{emotion} ({emo_conf:.3f})"
|
| 366 |
|
| 367 |
+
# keep prompt area synced
|
| 368 |
+
prompt_updates = update_prompt_ui(seq_choice, word_mode)
|
| 369 |
|
| 370 |
return (
|
| 371 |
sentiment, emo_str, accomplishment,
|
| 372 |
updated_phrase, top5_str, fig, img_path, meta,
|
| 373 |
+
*prompt_updates
|
| 374 |
)
|
| 375 |
|
| 376 |
+
# -------------------- UI --------------------
|
| 377 |
SEQ_CHOICES = list(SEQUENCE_ALIASES.keys())
|
| 378 |
+
DEFAULT_SEQ = "Knot" if "Knot" in SEQ_CHOICES else SEQ_CHOICES[0]
|
| 379 |
|
| 380 |
with gr.Blocks(title="RGB Root Matriz Color Plotter") as demo:
|
| 381 |
gr.Markdown("## RGB Root Matriz Color Plotter\n"
|
|
|
|
| 387 |
|
| 388 |
with gr.Row():
|
| 389 |
seq = gr.Dropdown(choices=SEQ_CHOICES, value=DEFAULT_SEQ, label="Pathway")
|
| 390 |
+
word_mode = gr.Radio(choices=WORD_MODES, value="Matrice", label="Word Mode")
|
| 391 |
|
| 392 |
+
legend = gr.HTML()
|
| 393 |
|
| 394 |
+
color_boxes: List[gr.Textbox] = []
|
|
|
|
| 395 |
for i in range(MAX_COLORS):
|
| 396 |
+
color_boxes.append(gr.Textbox(visible=False, label=f"Input {i+1}", placeholder="—"))
|
|
|
|
| 397 |
|
| 398 |
run = gr.Button("Generate Pathway Analysis", variant="primary")
|
| 399 |
|
|
|
|
| 400 |
with gr.Row():
|
| 401 |
sent = gr.Number(label="Sentiment (1–10)")
|
| 402 |
emo = gr.Text(label="Emotion")
|
| 403 |
acc = gr.Number(label="Accomplishment (1–10)")
|
| 404 |
|
| 405 |
with gr.Row():
|
| 406 |
+
phrase_out = gr.Text(label="Updated Pathway Phrase (template with your meanings)")
|
| 407 |
gnh_top = gr.Text(label="Top GNH Indicators (Top 5)")
|
| 408 |
|
| 409 |
gnh_plot = gr.Plot(label="GNH Similarity")
|
| 410 |
img_out = gr.Image(label="Pathway image", type="filepath")
|
| 411 |
meta_out = gr.Text(label="Chosen pathway / colors")
|
| 412 |
|
|
|
|
| 413 |
def _update_ui(seq_choice, mode):
|
| 414 |
return update_prompt_ui(seq_choice, mode)
|
| 415 |
|
| 416 |
+
seq.change(fn=_update_ui, inputs=[seq, word_mode], outputs=[legend, *color_boxes])
|
| 417 |
+
word_mode.change(fn=_update_ui, inputs=[seq, word_mode], outputs=[legend, *color_boxes])
|
| 418 |
|
| 419 |
run.click(
|
| 420 |
fn=analyze,
|
| 421 |
+
inputs=[inp, seq, word_mode, *color_boxes],
|
| 422 |
+
outputs=[sent, emo, acc, phrase_out, gnh_top, gnh_plot, img_out, meta_out, legend, *color_boxes],
|
| 423 |
)
|
| 424 |
|
| 425 |
+
demo.load(fn=_update_ui, inputs=[seq, word_mode], outputs=[legend, *color_boxes])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 426 |
|
| 427 |
if __name__ == "__main__":
|
| 428 |
demo.launch()
|