|
import random |
|
import time |
|
from pathlib import Path |
|
|
|
import numpy as np |
|
import pandas as pd |
|
from biotite.structure.atoms import AtomArrayStack |
|
from scipy.spatial.transform import Rotation as R |
|
from pinder.core import PinderSystem |
|
from pinder.core.structure import atoms |
|
from pinder.core.structure.contacts import get_stack_contacts |
|
from pinder.core.loader.structure import Structure |
|
from pinder.eval.dockq import BiotiteDockQ |
|
|
|
import gradio as gr |
|
|
|
from gradio_molecule3d import Molecule3D |
|
|
|
EVAL_METRICS = ["system", "L_rms", "I_rms", "F_nat", "DOCKQ", "CAPRI_class"] |
|
|
|
|
|
def predict( |
|
receptor_pdb: Path, |
|
ligand_pdb: Path, |
|
receptor_fasta: Path | None = None, |
|
ligand_fasta: Path | None = None, |
|
) -> tuple[str, float]: |
|
start_time = time.time() |
|
|
|
|
|
receptor = atoms.atom_array_from_pdb_file(receptor_pdb, extra_fields=["b_factor"]) |
|
ligand = atoms.atom_array_from_pdb_file(ligand_pdb, extra_fields=["b_factor"]) |
|
receptor = atoms.normalize_orientation(receptor) |
|
ligand = atoms.normalize_orientation(ligand) |
|
|
|
|
|
M = 50 |
|
|
|
stack = AtomArrayStack(M, ligand.shape[0]) |
|
|
|
|
|
for annot in ligand.get_annotation_categories(): |
|
stack.set_annotation(annot, np.copy(ligand.get_annotation(annot))) |
|
|
|
|
|
translation_magnitudes = np.linspace(0, 26, num=26, endpoint=False) |
|
|
|
for i in range(M): |
|
q = R.random() |
|
translation_vec = [ |
|
random.choice(translation_magnitudes), |
|
random.choice(translation_magnitudes), |
|
random.choice(translation_magnitudes), |
|
] |
|
|
|
stack.coord[i, ...] = q.apply(ligand.coord) + translation_vec |
|
|
|
|
|
stack_conts = get_stack_contacts(receptor, stack, threshold=1.2) |
|
|
|
|
|
pose_clashes = [] |
|
for i in range(stack_conts.shape[0]): |
|
pose_conts = stack_conts[i] |
|
pose_clashes.append((i, np.argwhere(pose_conts != -1).shape[0])) |
|
|
|
best_pose_idx = sorted(pose_clashes, key=lambda x: x[1])[0][0] |
|
best_pose = receptor + stack[best_pose_idx] |
|
|
|
output_dir = Path(receptor_pdb).parent |
|
|
|
pdb_name = Path(receptor_pdb).stem + "--" + Path(ligand_pdb).name |
|
output_pdb = output_dir / pdb_name |
|
atoms.write_pdb(best_pose, output_pdb) |
|
end_time = time.time() |
|
run_time = end_time - start_time |
|
return str(output_pdb), run_time |
|
|
|
|
|
def evaluate( |
|
system_id: str, |
|
prediction_pdb: Path, |
|
) -> tuple[pd.DataFrame, float]: |
|
start_time = time.time() |
|
system = PinderSystem(system_id) |
|
native = system.native.filepath |
|
bdq = BiotiteDockQ(native, Path(prediction_pdb), parallel_io=False) |
|
metrics = bdq.calculate() |
|
metrics = metrics[["system", "LRMS", "iRMS", "Fnat", "DockQ", "CAPRI"]].copy() |
|
metrics.rename( |
|
columns={ |
|
"LRMS": "L_rms", |
|
"iRMS": "I_rms", |
|
"Fnat": "F_nat", |
|
"DockQ": "DOCKQ", |
|
"CAPRI": "CAPRI_class", |
|
}, |
|
inplace=True, |
|
) |
|
end_time = time.time() |
|
run_time = end_time - start_time |
|
pred = Structure(Path(prediction_pdb)) |
|
nat = Structure(Path(native)) |
|
pred, _, _ = pred.superimpose(nat) |
|
pred.to_pdb(Path(prediction_pdb)) |
|
return metrics, [str(prediction_pdb), str(native)], run_time |
|
|
|
|
|
with gr.Blocks() as app: |
|
with gr.Tab("🧬 PINDER inference template"): |
|
gr.Markdown("Title, description, and other information about the model") |
|
with gr.Row(): |
|
with gr.Column(): |
|
input_protein_1 = gr.File(label="Input Protein 1 monomer (PDB)") |
|
input_fasta_1 = gr.File( |
|
label="Input Protein 1 monomer sequence (FASTA)" |
|
) |
|
with gr.Column(): |
|
input_protein_2 = gr.File(label="Input Protein 2 monomer (PDB)") |
|
input_fasta_2 = gr.File( |
|
label="Input Protein 2 monomer sequence (FASTA)" |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
btn = gr.Button("Run Inference") |
|
|
|
gr.Examples( |
|
[ |
|
[ |
|
"8i5w_R.pdb", |
|
"8i5w_R.fasta", |
|
"8i5w_L.pdb", |
|
"8i5w_L.fasta", |
|
], |
|
], |
|
[input_protein_1, input_fasta_1, input_protein_2, input_fasta_2], |
|
) |
|
reps = [ |
|
{ |
|
"model": 0, |
|
"style": "cartoon", |
|
"chain": "R", |
|
"color": "whiteCarbon", |
|
}, |
|
{ |
|
"model": 0, |
|
"style": "cartoon", |
|
"chain": "L", |
|
"color": "greenCarbon", |
|
}, |
|
{ |
|
"model": 0, |
|
"chain": "R", |
|
"style": "stick", |
|
"sidechain": True, |
|
"color": "whiteCarbon", |
|
}, |
|
{ |
|
"model": 0, |
|
"chain": "L", |
|
"style": "stick", |
|
"sidechain": True, |
|
"color": "greenCarbon", |
|
}, |
|
] |
|
|
|
out = Molecule3D(reps=reps) |
|
run_time = gr.Textbox(label="Runtime") |
|
|
|
btn.click( |
|
predict, |
|
inputs=[input_protein_1, input_protein_2, input_fasta_1, input_fasta_2], |
|
outputs=[out, run_time], |
|
) |
|
with gr.Tab("⚖️ PINDER evaluation template"): |
|
with gr.Row(): |
|
with gr.Column(): |
|
input_system_id = gr.Textbox(label="PINDER system ID") |
|
input_prediction_pdb = gr.File( |
|
label="Top ranked prediction (PDB with chains R and L)" |
|
) |
|
|
|
eval_btn = gr.Button("Run Evaluation") |
|
gr.Examples( |
|
[ |
|
[ |
|
"3g9w__A1_Q71LX4--3g9w__D1_P05556", |
|
"3g9w_R--3g9w_L.pdb", |
|
], |
|
], |
|
[input_system_id, input_prediction_pdb], |
|
) |
|
reps = [ |
|
{ |
|
"model": 0, |
|
"style": "cartoon", |
|
"chain": "R", |
|
"color": "greenCarbon", |
|
}, |
|
{ |
|
"model": 0, |
|
"style": "cartoon", |
|
"chain": "L", |
|
"color": "cyanCarbon", |
|
}, |
|
{ |
|
"model": 1, |
|
"style": "cartoon", |
|
"chain": "R", |
|
"color": "grayCarbon", |
|
}, |
|
{ |
|
"model": 1, |
|
"style": "cartoon", |
|
"chain": "L", |
|
"color": "blueCarbon", |
|
}, |
|
] |
|
|
|
pred_native = Molecule3D(reps=reps, config={"backgroundColor": "black"}) |
|
eval_run_time = gr.Textbox(label="Evaluation runtime") |
|
metric_table = gr.DataFrame( |
|
pd.DataFrame([], columns=EVAL_METRICS), label="Evaluation metrics" |
|
) |
|
|
|
eval_btn.click( |
|
evaluate, |
|
inputs=[input_system_id, input_prediction_pdb], |
|
outputs=[metric_table, pred_native, eval_run_time], |
|
) |
|
|
|
app.launch() |
|
|